PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

@UNIT:—lg]

@

BCHAPT]ERI |

Principles of Analyzing algorithms and Problems
An algorithm is a finite set of computational instructions, each instruction can be executed in finite
time, to perform computation or problem solving by giving some value, or set of values as input to
produce some value, or set of values as output. Algorithms are not dependent on a particular
machine, programming language or compilers i.e. algorithms run in same manner everywhere. So
the algorithm is a mathematical object where the algorithms are assumed to be run under machine
with unlimited capacity.

Examples of problems

e You are given two numbers, how do you find the Greatest Common Divisor.

e Given an array of numbers, how do you sort them?
We need algorithms to understand the basic concepts of the Computer Science, programming.
Where the computations are done and to understand the input output relation of the problem we
must be able to understand the steps involved in getting output(s) from the given input(s).

You need designing concepts of the algorithms because if you only study the algorithms then you
are bound to those algorithms and selection among the available algorithms. However if you have
knowledge about design then you can attempt to improve the performance using different design
principles.

The analysis of the algorithms gives a good insight of the algorithms under study. Analysis of
algorithms tries to answer few questions like; is the algorithm correct? i.e. the

Algorithm generates the required result or not?, does the algorithm terminate for all the inputs
under problem domain? The other issues of analysis are efficiency, optimality, etc. So knowing the
different aspects of different algorithms on the similar problem domain we can choose the better
algorithm for our need. This can be done by knowing the resources needed for the algorithm for its
execution. Two most important resources are the time and the space. Both of the resources are
measures in terms of complexity for time instead of absolute time we consider growth

Algorithms Properties
e Input(s)/output(s): There must be some inputs from the standard set of inputs and an
algorithm’s execution must produce outputs(s).
Definiteness: Each step must be clear and unambiguous.
Finiteness: Algorithms must terminate after finite time or steps.
Correctness: Correct set of output values must be produced from the each set of inputs.

Effectiveness: Each step must be carried out in finite time.
Here we deal with correctness and finiteness.

By Bhupendra aud Jfage 7

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu QDd@dq) New Summit College wgcfgw)
Random Access Machine Model (RAM)

This RAM model is the base model for our study of design and analysis of algorithms to have
design and analysis in machine independent scenario. In this model each basic operations (+, -)
takes 1 step, loops and subroutines are not basic operations. Each memory reference is 1 step. We
measure run time of algorithm by counting the steps.

Algorithms:

> Designing of algorithms _)
> Analysis of algorithms ::l Study in details

» Validation of algorithms «———— Few study
» Testing of algorithms ~ «——— No study

Best, Worst and Average case
The least possible execution time taken by an algorithm for a particular input is known as
best case. Best case complexity gives lower bound on the running time of the algorithm for
any instance of input. This indicates that the algorithm can never have lower running time
than best case for particular class of problems.

Worst case complexity: The maximum possible execution time taken by an algorithm for
a particular input is known as worst case. It gives upper bound on the running time of the
algorithm for all the instances of the input. This insures that no input can overcome the
running time limit posed by worst case complexity.

Average case complexity: It gives average number of steps required on any instance of the
input.
Example: - let’s take an algorithm for Quick sort

QuickSort(A,lr)

if(I<r)

{
p = Partition(A,Lr);
QuickSort(A,l,p-1);

QuickSort(A,p+1,r);
}
}
Partition(A,l,r)
{
x=ly=r;p=A[ll;
while(x<y)
while(A[x] <= p)
{ X++;
}
while(Aly] >=p)
y--,
N
By Bhupendra aud dage 2

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

if(x<y)
swap(A[x],Aly]);

}
All] = Alyl; Aly] = p;
returny; //return position of pivot

ky

Best Case Time Complexity:
Divides the array into two partitions of equal size, therefore

T(n) =2T(n/2) + O(n) , Solving this recurrence we get,
= Time Complexity = O(n log n)

Worst Case Time Complexity:
When array is already sorted or sorted in reverse order, one partition contains n-1 items and

another contains zero items, therefore its recurrence relation is,
T(n) = T(n-1) + O(1), Solving this recurrence we get
= Time Complexity = O(n?)

Average Case Time Complexity:
Average case occurred when the elements are divided into ratio 9:1

Then the recurrence relation for this case is,
T (n) =T (9n/10) + T (n/10) + O (n), by solving this recurrence we get
Time Complexity = O (n log n)

0]

[& NOTE: - In our study we concentrate on worst case complexity only.

Example 1: Detailed analysis of Bubble sort:
Bubble_Sort(A, n)

{
for (i=1;i<=n;i++)
{
for (j=0; j<n-i; j++)
{
if(A[j]>A[j+1])
{
temp=A[j[;
AlilI=AL+1];
A[j+1]=temp;
}
}
}
}
Analysis:

Space complexity:
s.c=1+1+1+1+n=n+4=0 (n)

By Bhupendra aud fage 3

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Time complexity:
Within first for loop:
i=1 takes 1 step------- >1
i<=n takes (n+1) steps-------- > (n+1)
i++ takes n steps--------- >n
Within second for loop:
j=0 takes n step------- >1
j<n-itakes [n + (n-1) + (n-2) + --------- +2+1]
jt++ takes [(n-1) + (n-2) + --------- +2+1]
In if statement:
It takes at most 3* (n-1)
So total time complexity (T. C) =
T.c=1+(n+1)+n+[n+[n+(n-1)+(n-2)+......... +3+2+1]+ [(n-1)+(n-2) +......
L3241]]4H3*[(n-1)+(n-2) +...... L3241
=2n+2+ [n + n (n+1)/2+n (n-1)/2] + 3*n (n-1)/2
=2n+2+n+n* [2+n/2+ n* [2-n/2+2n%/2-3n/2
= (5n*+5n)/2
=0 (%)

In brief:

Outer for loop executes at most n times

Inner for loop executes at most n times

Since both are nested loop thus time complexity is,
T (n) = n*n=0(n?)

Example 2: Analysis of nth Fibonacci number generating algorithm:
Input: n

Output: n™ Fibonacci number.

Algorithm: assume a as first (previous) and b as second (current) numbers

Fib (n)
{
a=0,b=1, f=1;
for(i=2;i<=n;i++)
{
f=atb;
a=b;
b=f;
}
return f ;
}
Efficiency

Time Complexity: The algorithm above iterates up to n-2 times, so time complexity is O(n).
Space Complexity: The space complexity is constant i.e. O(1).

By Bhupendra aud Jfage 4

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms QDd@dq) New Summit €ollege wgcfgw)
Mathematical Foundation

Since mathematics can provide clear view of an algorithm. Understanding the concepts of
mathematics is aid in the design and analysis of good algorithms. Here we present some of the
mathematical concepts that are helpful in our study.

Exponents
Some of the formulas that are helpful are:
. Xa Xb — Xa+b
*OX X=X
. (X ayb _ Xab
* X"+ x"=2X"
L] 2n + 2n - 2n+1
Logarithms

Some of the formulas that are helpful are:

. logab = logcb / loge a ; c>0 [making base same]
.logab=1loga+logh

.loga/b=1loga-logh

log (@) =bloga

. Log x < x for all x>0

.Log1=0,log2=1, log 1024 = 10.

. 3 logb" =, logb®

~N OO0 WNEF

L. n(n+1)

: 2

2 n(n+1)(2n+1)
- 6

2i — 2I’H—1 _1

)
i=1
iZno:a‘ sﬁ;if0<a<1
2

Asymptotic Notation

Complexity analysis of an algorithm is very hard if we try to analyze exact. We know that the
complexity (worst, best, or average) of an algorithm is the mathematical function of the size of the
input. So if we analyze the algorithm in terms of bound (upper and lower) then it would be easier.
For this purpose we need the concept of asymptotic notations. The figure below gives upper and
lower bound concept.

Big Oh (O) notation

When we have only asymptotic upper bound then we use O notation.

If f and g are any two functions from set of integers to set of integers then function f(x) is said to
be big oh of g(x) i.e.f(x)=0(g(x))) iff there exists two positive constants ¢ and X, such that

for all x >= xp, 0 <= f(x) <= c*g(X)

The above relation says that g(x) is an upper bound of f(x)

By Bhupendra aud fage 5

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Some properties:

Transitivity: f(X) = O(g(x)) & g(x) = O(h(x)) then f(x) = O(h(x))

Reflexivity: f(x) = O (f(x))

O (1) is used to denote constants.

For all values of n >= no, plot shows clearly that f(n) lies below or on the curve of c*g(n)

C.zin)

/_/L ffl.'l}

,—

iy fin)= O gin)}

Examples
1. f(n)=3n*+4n+7
<=3n%+ 4n* + 7Tn* <=14n°
= f(n)<=14n?
where ¢=14 and g(n) = n?, thus f(n) = O(g(n)) = O(n?)

2. Prove that n log (n%) is O(\n%)).
Proof: we have n log (n®) = 3n log n
Again, Yn*=n n,
If we can prove log n = O(\n) then problem is solved
Because n log n = n O(n) that gives the question again.
We can remember the fact that log *n is O (n°) for all a,b>0.
In our problema=1and b =1/2,
hence log n = O(\n).
So by knowing log n = O(¥n) we proved that
n log (n*) = O(\n%)).

Big Omega (Q) notation
Big omega notation gives asymptotic lower bound.
If f and g are any two functions from set of integers to set of integers then function f(x) is said to

be big omega of g(x) i.e.f(x)= €2(g(x)) iff there exists two positive constants ¢ and xo such that
for all x >= xo, 0 <= c*g(x) <= f(x).
The above relation says that g(x) is a lower bound of f(x).

By Bhupendra aud Jfage 6

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

f(n)

c.g(n)

M

ﬂ[|

finy=(g(n)

For all values of n >= ng, plot shows clearly that fin) lies above or on the curve of ¢®g(n).

Examples
1. f(n)=3n*+4n+7
g(n) = n?, then prove that f(n) =€2(g(n)).
Proof: let us choose ¢ and ng values as 3 and 1, respectively then we can have
f(n) >= c*g(n), n>=ng as
3n° +4n+7>=3*n*foralln>=1
The above inequality is trivially true

Hence f (n) =C2 (g(n))

Big Theta (®) notation
When we need asymptotically tight bound then we use notation.
If f and g are any two functions from set of integers to set of integers then function f(x) is said to

be big theta of g(x) i.e. f(x)= @(g(x)) iff there exists three positive constants c1, c2 and xo such that
for all X >= xo, c1*g(x) <= f(x) <= c2*g(x)

The above relation says that f(x) is order of g(x)

Some properties:

Transitivity: f(x) = ®(g(x)) & g(x) = O(h(x)) then f(x) = O(h(x))
Reflexivity: f(x) = O(f(x))
symmetry: f(x) = ®(g(x)) iff g(x) = O((x))

By Bhupendra aud fage 7

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

C; .gin)

/
;—,/j C1 .g(n)
Vi

f(n)

ii]

fimy= © (2(n)

For all values of n >= ng, plot shows clearly that f{n) lies between ¢1* zin)and c2*gin).

Example
1. f(n)=3n*+4n+7
g(n) = n?, then prove that f(n) = (g(n)).
Proof: let us choose ¢y, ¢, and ng values as 14, 1 and 1 respectively then we can have,
f(n) <= c1*g(n), n>=ng as 3n° + 4n + 7 <= 14*n’ | and
f(n) >= cy*g(n), n>=ng as 3n° + 4n + 7 >= 1*n?
for all n >=1(in both cases).
So cx*g(n) <= f(n) <= cy*g(n) is trivial.
Hence f(n) = © (g(n)).

Recurrences

e To analyze the Recursive algorithms we must need to find their recurrence relations.
e A recurrence relation is an inequality that describes a problem in terms of itself.

For Example:

Recursive algorithm for finding factorial

T(n)=1 when n =1
T(n)=T(n-1) + O(1) when n>1
Recursive algorithm for finding Nth Fibonacci number
T(1)=1 when n=1
T(2)=1 when n=2
T(n)=T(n-1) + T(n-2) +O(1) when n>2
Recursive algorithm for binary search
T(1)=1 when n=1
T(n)=T(n/2) + O(1) when n>1

Cost of solving recursive algorithm= cost of dividing problem + cost of solving
sub problems + cost of merging solutions

By Bhupendra aud Jfage 8

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Techniques for Solving Recurrences
We’ll use four techniques:

e [teration method

e Recursion Tree

e Substitution

e Master Method — for divide & conquer

e Characteristic Equation [not needed to study] — for linear

Iteration method
Here we expand the given relation until the boundary is not meet.
Expand the relation so that summation independent on n is obtained.
Examplel: T(n)=2T(n/2) +1 when n>1

T(n)=1 when n=1
Sol™: T(n) =2T(n/2) +1

=2{2T (n/4) + 1} +1

=2’T(n/2) +2+1

=22 {2T(n/2%) +1}+2+1

=22 T2} +2%+2+1

=T+ 2%+ +4+2+1.

For simplicity assume:

n/2¢=1

or, n=2

Taking log on both sides,

log n=log 2"

log n=k log 2

= k=log n [since log 2=1]
Now, T(n)= 2 T(n/2X) + 2% + ... +4+2+1.
T(N)= 2 T(L)+ 2% + ool +22+ 28+ 20
T(n)= (2***-1)/ (2-1)
T(n)=2***-1
T(n)=2.2%-1
T(n)=2n-1
T(n)=0O(n)

R

Example 2:
T(n) = T(n/3) + O(n) when n>1
T(n)=1 when n=1
sol" T(n) = T(n/3) + O(n)
~ T(n)=T(n/3) +cn
= T(n) = T(n/3%) + cn/3 +cn
= T(n) = T(n/3% +cn/32+ cn/3 +cn
= T(n) = T(n/3*% +cn/3® +cn/3% + cn/3 +¢n
> T(n)= T3 +cn/3 + ... +cn/3% + cn/3 + cn
Simplicity assume
n/3“=1

By Bhupendra aud Jfage 9

Downloaded from CSIT Tutor

Design kand nalysis of glgorithms (Dg?) New Summit College (B.§c.€5T)
or,n=3

taking log on both sides,

log n=log 3*

k = logsn

T(n)<= T() +cn/3 ... +c.n/3%+ cn/3 +c.n

T(n)<=1+{cn3 .. +c.n/3%+ ¢.n/3 + c.n}

T(n)<=1+c.n { 1/(1-1/3) }

T(n) <=1+3/2c.n

T(n) = O(n)

443483038

Example 3: T(n)=T(n-1) +O(1)
=T(n-2) +1 +1 [since O(1)=1 where choose c=1]
=T(n-3)+1+1+1
= T(n-4)+1+1+1+1
=T(n-k)+1+.......oo.eee. +1 (k times)
Lets choose n-k=1
= k=n-1
Now T(n)=T(1)+1+.......... +1 (k times)
=1+k*1
=k+1
=n-1+1=n
= T(n)=0(n)

Example 4: T(n)=2T(n/2) + n
=2£2T(n/22)+ n/2] +n
=2°T(n/2%)+ n +n
=2[2T(n/2%)+ n/2?]+n + n
=2°T(n/2%)+ n +n+n

=2T(/2%+n+n+........ +n (k times)
Let’s put n/2%=1
= n=2%
Taking log on both sides,
log n=log 2"
or, log n=k log 2
= k=logn
Now, T(n)=n T(1) +n+n+.............. +n (k times)
=n+ k*n
=(kn+n)
=log n*n +n
=n log n +n
= O(n log n)

By Bhupendra aud dfage 70

Downloaded from CSIT Tutor

ﬁeblgn Fnd Rnalysis of Rlgorithms Qqud@)

Example 5: T(n)=T(n/3) + n
=T(n/3%) +n/3 + n

= T(n/3%) +n/3% + n/3 +n
=T(/3") +n/3¥ +n/3% +n/3 +n

= T(n/3%) + n/3*t +...

Lets put n/3* =1
=> 3=n
Taking log on both sides
= log 3“=log n
= klog 3 =logn
= k= log n/log 3

Now T(n)= T(1) + n/3“ +.........
=1+n[U3°+1/3 + 132+ 133+ +1/3%2+ 1/3*Y

+1/3% + /3t + n/3°

Since this is a geometric series of common ration r =1/3

Thus T(n)= 1 + n[1-(1/3)"] / [1-1/3]
=1+n[1-1/3/ 213
=1+ 3n/2 [1-1/n]
=1+ 3n/2 * (n-1)/n
=1+3n/2-3/2
=3n/2 -1/2
=0(n)

Hence T(n)= O (n)

Recursion Tree

(- -
Sum of Geometric series:

a(r" -1)

& s =— ifr>1
r-1

KX Snzw ifr<i
1-r

Just Simplification of Iteration method:
This is a pictorially representation of iteration method.
Example 1:- Consider the recurrence

T(1)=1
T(n)=T(n/2)+ 1

when n=1
when n>1

New Summit College wgcff‘ZJ)

By Bhupendra aud

Downloaded from CSIT Tutor

(fage 17

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Cost at each level =1
For simplicity assume that n/ 2¥=1
= n=2
Taking log on both sides,
= log n=log2"
= klog 2=logn
= k=logn
Summing the cost at each level,
Totalcost=1+1+1+.............o....e. +T (/29
=1+1+....... +1 (k times) +T (1)
=k*1+1
= (k+1)
=log n+l
= T (n)=0(log n)

Example 2:-
TMA)=1 when n=1
TM)=T(n-1)+1 when n>1
By Bhupendra aud Jfage 12

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Soln:-
@ ? @ 1
T(n-1) <1> 1
T™n-2) (N 1
T(K) oo 1
T.C=Tm=1+1+......... + 1 (k times) + T(n-k)
=k*1+T(n-k)
Let s put n-k=1
= k=n-1
Now T(n)=k + T(1)
=n-1+1=n
=0 (n)
= T (nN)=0 (n)
Example 3:-
T(A)=1 when n=1
TMN)=2T(/2)+1 when n>1
Soln:-
T(n/2) T(n/2)
T(n/2%) T(n/2%) T(n/2%) T(n/2%)
................................... 1=2°
..................................... 2=2"1
T(n/2Y) T(/2¥) T(/2Y T(/2% T(/2X) T(/2X) T(/2X) T(/2%) ... 2k
By Bhupendra aud dfage 13

Downloaded from CSIT Tutor

PDesign gnd afna?(bib of Flgorithms (DAd?) New Summit College (B.§c.€5T)
Now T(n)=2 %+ 2%+ 2%+ +2K
=1+2 [2%1]/2-1
= 1+ 2(2%1)
= 2%2% -1
For simplicity assume that n/ 2<=1
= n=2
Taking log on both sides,
= log n=log2"
= klog 2=log n
= k=logn
Now T (n) =2n-1
Hence, T (n) = O (n)

Example 4:-
T@)=1 when n=1
TM)=2T(/2)+n when n>1
Soln:-

T(n/2) T(n/2) @

T(n/2%) T(n/2%) T(n/2%) T(n/2%)

@

, <

, ’ N <

4 ‘\ ’ N S RS
N ' ~ 1 ~

T2 T(n/2Y T(n2Y T(/2% T2 T(n/2X T(n2%) T(/2")......... n

Now T(nN)=n+n+n+......... +n (k times) + T(n/2%)
=n*k+ T(n/2%
For simplicity assume that n/ 2¥=1
= n=2X
Taking log on both sides,
= log n=log2"
= klog 2=logn

= k=logn
Now T (n) =kn + T(1)
=nlogn+1 Hence, T (n) = O (n log n)
By Bhupendra aud Jfage 14

Downloaded from CSIT Tutor

ﬂeblgn Fnd Rnalysis of Rlgorithms QDd@dq)
Example 5:-
T()=1 when n=1
TM)=T({N/2)+T(n/3)+0 (1)
Soln:-

oA

T(n2) T/3)

New Summit College (B.§c.€5T)

T(n/4) T(n/6) T(n/6) T(n/9)

... 2k
Now total cost, T(n) <2 %+ 21+ 2%+

................... +2K
=1+ [2(2%1)/ (2-1)]
=1+2%2-2
=2*2¢-1
Lets put n/2*=1
= n=2"
Taking log on both sides,
= log n=log2"
= klog 2=logn
= k=logn
Now T (n)<2*n-1
<2n-1 Hence, T (n) = O (n)

By Bhupendra aud

dfage 715

Downloaded from CSIT Tutor

ﬂeblgn Fnd Rnalysis of Rlgorithms Qqud@)
Example 6

New Summit €ollege wgcfgw)
Solve T(n) = T(n/4) + T(n/2)+ n?

/ / : >\
T(n/4) T(n/2)

(n/4)? (n/2)?

AN LN

T(n/8) T(n/8) T(n/4)

D NN n 2
(n/4)2 (H/Z)Z e 5n 2/16
/(i/lé >< (n//g)z\ (U R —— 52n2/162
T(n/64) T(n/32) T(n/32) T(n/16) T(n/32) T(n/16) T(n/16) T(N/8) «......... 5% n’/16°
‘\\‘ <= 5kn2/16k
T(n/2%
Total Cost <n® +5n%/16 + 5%n%/16% +5° n%/16%+..........ovvn +5%n?/16
{Why <? Why not =7}
<n® (1+5/16 + 54162 + 5516°+....ovve e + 5416
<N [1+ (5/16 + 52/16% + 5%16%+....ooeeeii . +54169]
< n®+[1+ (1-5%16%) / (1-5/16)]
< n®+[1+11(1-5*16%)/ 16]
Let’s put n/2%=1
o n=2¢
taling log on both sides
log n= log 2
= logn=klog 2
= k=logn [since log 2=1]
Now T(n) < n? + [1 + 11(1-5'"/16'9™) / 16]
< n*+constant < O(n) Hence T (n) = O (n?)
.7 oB/mpend‘m Saud Jfage 76

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Substitution Method
In this method to obtain the upper bound (worst case time complexity) of the recurrence relation
we must use following two steps:

1. At first guess the solution,

2. Then verify the solution by using mathematical induction.

[j Note: Initially guessing the solution of a problem depends upon your practices. ﬂ

Example 1:
T(n)=1 n=1
T(n) =4T(n/2) + n n>1
Soln: Guess T(n) = O(n®)
= T(n)<cn® foralln>=ng.......cccccnnn..e. (1)

Now prove this by mathematical induction as,

Base step,
For n=1:
T(n) = c*1° Definition
1<c which is true for all +ve values of ¢

Inductive step,
Lets assume that it is true V k <n
Then T(K) S CK3.ovnnreeieeee e)
It is also true for k=n/2
Now equation 2 becomes,
T(n/2) < c (n/2)?
=cn’8
Now, T(n) =4T(n/2) +n
<4cn’8+n
=cn®/2+n
=cn®-cn’2 +n
=cn®-n(cn’2-1)<cn’
Hence T (n) <c n®for ¥n>0
Thus T(n) =O(n®) Proved

Example 2 show that O(n?) is its solution

T(n)=1 n=1
T(n) =4T(n/2) +n n>1
Soln: Guess: T(n) = O(n?).
T(n)<cn®forvn>n0..........cco....... (1)
Now proof this relation by using mathematical induction
Base step,
For n=1,
T(n) = c*1? Definition
By Bhupendra aud dfage 17

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

1<c which is true for all +ve values of ¢

Inductive step,
Lets assume that it is true V k <n
Then T(K) S CK%...oeeeee e)
It is also true for k=n/2
Now equation 2 becomes,
T(n/2) < ¢ (n/2)?
=cn’/4
Now, T(n) =4T(n/2) +n
<4cn’l4+n
=cn? +n
=>T(n) =cn’tn
It is not possible to show that ¢ n’+ n <cn? V¥ n>0, thus we try to subtract lower order term as,
Since T(n) = O(n)
=>T(n)<cn’—dn [sincecn’—dn <CN’] oo, (3)
Where ¢ and d are +ve constants
Now proof this relation by using mathematical induction,

Base step,
For n=1,
T(n) = c*1%— d*1 Definition
1<c-d which is true for all +ve valuesof cand d < c¢

Inductive step,
Lets assume that it is true V k <n
Then T(K) < k% — A Kevvveneeeeeieee e (4)
It is also true for k=n/2
Now equation 4 becomes,
T(n/2) <c (n/2)*>—d n/2
=cn’4—dn/2
Now, T(n) =4T(n/2) +n
<4[cn’4—dn/2] +n
<cn’-2dn]+n
<cn—-dn-dn+n
<(cn*—dn)—n(d-1)<(cn’-dn)
=>T(n)<(cn’-~dn)Vn>0
Thus T(n) =O(n®) Proved

@ Ability to guess effectively comes with experience. Qj
Example 3 show that O(n®) is its solution
T(n)= 8 T(n/2) + n by using substitution method

Sol™- Guess: T(n) = O(n%)
T(ny<cn*forvn>n0.................... (1)

By Bhupendra aud Jfage 18

Downloaded from CSIT Tutor

ﬂeblgn Fnd Rnalysis of Rlgorithms Qqud@)

Now proof this relation by using mathematical induction

Base step,
For n=1,
T(n) = c*1° Definition
1<c which is true for all +ve values of ¢

Inductive step,
Lets assume that it is true V k <n
Then T(K) < CK3..nnnee i)
It is also true for k=n/2
Now equation 2 becomes,
T(n/2) < c (n/2)?
=cn’/8
Now, T(n) = 8T(n/2) + n?
<8cn’8+n’
=cn’+n’
=>T(n) =cn’+n’

New Summit College (B.§c.€5T)

It is not possible to show that ¢ n®+ n® <cn® v n>0, thus we try to subtract lower order term as,

Since T(n) = O(n?)

=>T(n) <cn®—dn’ [sincecn®—dn® <cn® .coeeeeierinnn, (3)
Where ¢ and d are +ve constants
Now proof this relation by using mathematical induction,
Base step,
For n=1,
T(n) = c*1? — d*1 Definition
1<c-d which is true for all +ve valuesof cand d < c

Inductive step,
Lets assume that it is true V k <n
Then T(K) <ck® —d k2. oo 4)
It is also true for k=n/2
Now equation 4 becomes,
T(n/2) < c (n/2)° — d(n/2)?
=cn’/8—dn’4
Now, T(n) = 8T(n/2) + n?
< 8[c n®8 —d n%/4] + n’
<cn®-2dn?+n?
<cn’—dn?—dn®+n
<cn—dnd)-n@dn-1)<(cn’*-dn?
=T(M)<(cn*-dn’ Vn>0
Thus T(n) =O(n®) Proved

By Bhupendra aud

dfage 79

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms Qqud@) New Summit €ollege GB 5. €5%T)
Changing Variables:
Sometimes a little algebraic manipulation can make an unknown recurrence similar to one we have
seen.
Consider the example

T(n) =27 (Ln"2])+1logn
Looks Difficult: Rearrange like

Let m=log n
=>n= 2m
Thus,

TE@M=2T (2" +m
Again let S (m) =T (2™
S(m)=2S (m/2) + m
We can show that
S (m) =0 (mlog m)
= T(n) =T(2™) =S(m) = O (m log m) = O(log n log logn)

Master Method
The master method is used to solve the recurrence relation of the form,
T(n)=aT(n/b) +f(n)
where a>1, b>1 are constant, f(n) asymptotically positive function
If the recurrence relations is in this form then there are following four possible cases occurred:

Master Method Case 1
If f (n) = O (n'%, 2) for some constants >0
Then

T(n) = © (n%?)

Master Method Case 2
If f(n) = Q(n"%, 2 **) for some constants >0
Then

T(n) =©(f(n))

Master Method Case 3
If f(n) = © (n'*%,?) for some constants >0
Then

T(n) =0O(f(n).logn)

In the above three cases we are comparing the values of f(n) and n'®, @ and then find complexity
of the given recurrence relation.

Master Method Case 4 In this case the master method cannot be applied
Example: - T (n) =4 T (n/2) + n*/ log n

Soln: - Comparing this relation with the general form of master relation T (n) =a T (n/b) + f (n)
Where a=4, b=2and f (n) =n% log n
NOW, nIogb a_ r.||0g2 4_ n2 Iog2 2 :n2

By Bhupendra aud Jfage 20

Downloaded from CSIT Tutor

PDesign gnd gnalysis of GRlgorithms Qqud@) New Summit €ollege GB 5. €5%T)
Test case 1:- f (n) = O (n'°%, 29
=>f(n) <n'%?°°
Or, f(n) <n®°¢

2 2
or, "N
logn &
n2 n2
Oor, —<—— where we choose € = 0.1
logn 0.1

=>n2n’*<n’logn
To satisfy this relation the value of log n must be greater than n°?,
But n®! is a polynomial in 0.1 thus n®! must be greater than log n
ie. "®*> log n
Thus master method failed in this case

Test case 2:- f(n) = Q(n'*% 2*)
= f(n) > r]Iogb a+e
2
or, 1 _>np2+e
logn

2
or, *_>p2+01

logn
Or,n’> n?n®! logn which is false

Test case 3:- f(n) = © (% ?)

=> f(n) = n'9, 2

2
or N _p2
logn

Or,n*=n’logn which is false
Since master method is false in all three cases thus, in this recurrence relation master method can
not be applied.

Example 1 Solve the following recurrence relation by using Master’s method
T(n)=3T(n/2) +n
sol" : Here we have a=3, b=2 and f(n) = n
Now, r]Iogb a_ rlIog2 3_ n (log 23/ log 22) - n1.584
Also f(n) = n*
Since f(n) <n where choose € = 0.1
Thus it satisfy the first case of Master’s method
Thus it’s complexity,
T(n): ® (nlogb ay — ® (n|092 3) =¥c) (nl.58)
Thus T(n)= © (n**%)

log a-¢
b

By Bhupendra aud Jfage 27

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Example 2 Solve the following recurrence relation by using Master’s method
T(n) =4 T(n/2) +n?
sol" : Here we have a=4, b=2 and f(n) = n’
Iog a_ Iogz4 - nz IogZZ _ 2

Now, N =N =n
Also f(n) = n?
Since f(n) = n"°%, 2

Thus it satisfy the third case of Master’s method
Thus it’s complexity,
T(n)=© (f(n) log n) = © (n’log n)
Thus T(n) = ® (n? log n)

Example 3 Solve the following recurrence relation by using Master’s method
T(n)=9T(n/3) +n
sol” : Here we have a=9, b=3 and f(n) = n
Now, nIog a_ nIog3 9 - nz Iog3 3 - n2
Also f(n) =n
Since f(n) <N where choose € =0.1
Thus it satisty the first case of Master’s method
Thus it’s complexity,
T(N)=0 (n*%% =0 (n%° =0 (n?)
Thus T(n)= © (n%)

Iogag

Example 4 Solve the following recurrence relation by using Master’s method
T(n) =3 T(n/4) +nlogn
sol" : Here we have a=3, b=4 and f(n) = n log n
Now, Iqlog a If.'log 3_ n0.658
Also f(n) =nlogn
Since f(n) > N'°% 2 ** where choose ¢ = 0.1
Thus it satisfy the second case of Master’s method
Thus it’s complexity,
T(n)=0 (f(n)) =© (nlog n)
Thus T(n)= 6 (nlog n)

Example 5 Solve the following recurrence relation by using Master’s method
T(n) =2 T(n/4) +Vn

sol" : Here we have a=2, b=4 and f(n) = ¥ n = n*? = n%*
Now, r]Iog a rlIog 2 _ I,]0.5
Also f(n) = n°5
Since f(n) = N9,

Thus it satisfy the third case of Master’s method
Thus it’s complexity,
T(n)= O (f(n) log n) = ® (n°° log n)
Thus T(n) = ® (n*° log n)

By Bhupendra aud Jfage 22

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Example 6 Solve the following recurrence relation by using Master’s method
T(n)=2T(2n/3) +1
sol" : At first convert this relation into Master’s form as,
T(n) =2 T(n/3/2) + n°
=> T(n) =2 T(n/1.5) + n°
SOLVE ITSELF ..o

We get solution T(n) = © (n*®*)

EXxercises

» Show that the solution of T(n) = 2T(n/2) + nis Q(n log n). Conclude that solution is ® (n log n).

» Show that the solution to T(n) =2T(n/2 + 17) + nis O(n log n).

» Write recursive Fibonacci number algorithm derive recurrence relation for it and solve by
substitution method. {Guess 2"}

» Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is (n log n) by
appealing to a recursion tree.

» Use iteration to solve the recurrence T(n) = T(n-a) + T(a) + n, where a >=1 is a constant.

» The running time of an algorithm A is described by the recurrence T(n) = 7T(n/2) + n°. A

competing algorithm A’ has a running time of T’(n) = aT’(n/4) + n2. What is the largest
integer value for ‘a’ such that A’ is asymptotically faster than A?

..

Review of Data Structures
This part is to introduce some of the data structures if you want rigorous study you can consult the
book on Data Structures.

Simple Data structures
The basic structure to represent unit value types are bits, integers, floating numbers, etc. The
collection of values of basic types can be represented by arrays, structure, etc. The access of the
values are done in constant time for these kind of data structured

Linear Data Structures
A data structure is called linear if every item is related with next and previous items. In another
words the data structure in which items are arranged in sequence manner is called linear data
structure. Examples of linear data structures are: array, linked list, stack, queue etc. Linear data
structures are widely used data structures we quickly go through the following linear data
structures.

Lists

List is the simplest general-purpose data structure. They are of different variety. Most fundamental
representation of a list is through an array representation. The other representation includes linked
list. There are also varieties of representations for lists as linked list like singly linked, doubly
linked, circular, etc. There is a mechanism to point to the first element. For this some pointer is
used. To traverse there is a mechanism of pointing the next (also previous in doubly linked). Lists
require linear space to collect and store the elements where linearity is proportional to the number

By Bhupendra aud Jfage 23

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
of items. For e.g. to store n items in an array nd space is required were d is size of data. Singly
linked list takes n(d + p), where p is size of pointer. Similarly for doubly linked list space
requirement is n(d + 2p).
Array representation

v’ Operations require simple implementations.

v’ Insert, delete, and search, require linear time, search can take O(logn) if

binary search is used. To use the binary search array must be sorted.

v' Inefficient use of space
Singly linked representation (unordered)
1. Insert and delete can be done in O(1) time if the pointer to the node is given, otherwise O(n) time.
2. Search and traversing can be done in O(n) time
3. Memory overhead, but allocated only to entries that are present.

Doubly linked representation
4. Insert and delete can be done in O(1) time if the pointer to the node is given, otherwise O(n) time.
5. Search and traversing can be done in O(n) time
6. Memory overhead, but allocated only to entries that are present, search becomes easy.
boolean isEmpty ();
Return true if and only if this list is empty.
e intsize ();
Return this list’s length.
e boolean get (int i);
Return the element with index i in this list.
e boolean equals (List a, List b);
Return true if and only if two list have the same length, and each element of the lists are equal
e void clear ();
Make this list empty.
e void set (int i, int elem);
Replace by elem the element at index i in this list.
e void add (int i, int elem);
Add elem as the element with index i in this list.
e void add (int elem);
Add elem after the last element of this list.
e void addAll (List a List b);
Add all the elements of list b after the last element of list a.
e int remove (inti);
Remove and return the element with index i in this list.
e void visit (List a);
Prints all elements of the list

Operation Array representation SLL representation
get 0O(1) O(n)
set 01 O(n)
add(int,data) O(n) O(n)
add(data) 0(1) 0(1)
remove O(n) O(n)
By Phupendeaoud — Pagess

Downloaded from CSIT Tutor

Pesign fend gRnalysis of glgorithms (Dg?) New Summit College (B.§c.€5T)
equals o(n%) o(n®

addAll o(n?) o(n?)

Stacks and Queues
These types of data structures are special cases of lists. Stack also called LIFO (Last In First Out)
list. In this structure items can be added or removed from only one end. Stacks are generally
represented either in array or in singly linked list and in both cases insertion/deletion time is O(1),
but search time is O(n).
Operations on stacks
> boolean isEmpty ();
Return true if and only if this stack is empty. Complexity is O(1).
> int getLast ();
Return the element at the top of this stack. Complexity is O(1).
> void clear ();
Make this stack empty. Complexity is O(1).
» void push (int elem);
Add elem as the top element of this stack. Complexity is O(1).
> int pop ();
Remove and return the element at the top of this stack. Complexity is O(1).

The queues are also like stacks but they implement FIFO(First In First Out) policy. One end is for
insertion and other is for deletion. They are represented mostly circularly in array for O(1)
insertion/deletion time. Circular singly linked representation takes O(1) insertion time and O(1)
deletion time. Again Representing queues in doubly linked list have O(1) insertion and deletion time.
Operations on queues
3. boolean isEmpty ();
Return true if and only if this queue is empty. Complexity is O(1).
4. intsize ();
Return this queue’s length. Complexity is O(n).
5. int getFirst ();
Return the element at the front of this queue. Complexity is O(1).
6. void clear ();
Make this queue empty. Complexity is O(1).
7. void insert (int elem);
Add elem as the rear element of this queue. Complexity is O(1).
8. int delete ();
Remove and return the front element of this queue. Complexity is O(1).

Non —linear data structure:

A data structure is said to be non- linear data structure if any item is attached with many of
the items in specific ways. In another word, a data structure in which all the data are arranged in
random manner is called non-linear data structure. Example: Tree, Graph etc.

Tree Data Structures
Tree is a collection of nodes. If the collection is empty the tree is empty otherwise it contains a
distinct node called root (r) and zero or more sub-trees whose roots are directly connected to the

By Bhupendra aud Jfage 25

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu QDd@dq) New Summit College wgcfgw)
node r by edges. The root of each tree is called child of r, and r the parent. Any node without a
child is called leaf. We can also call the tree as a connected graph without a cycle. So there is a
path from one node to any other nodes in the tree. The main concern with this data structure is due
to the running time of most of the operation require O(logn). We can represent tree as an array or
linked list.
Some of the definitions

e Level h ofa full tree has d"* nodes.

e The first h levels of a full tree have
THd+d?+ oo, d" = (d"-1)/(d-1)

Binary Search Trees

BST has at most two children for each parent. In BST a key at each vertex must be greater than all
the keys held by its left descendents and smaller or equal than all the keys held by its right
descendents. Searching and insertion both takes O(h) worst case time, where h is height of tree and
the relation between height and number of nodes n is given by log n < h+1 <= n. for e.g. height of
binary tree with 16 nodes may be anywhere between 4 and 15.

When height is 4 and when height is 15?

So if we are sure that the tree is height balanced then we can say that search and insertion has
O(log n) run time otherwise we have to content with O(n).

Operation Algorithm Time complexity

Search BST search O(log n) best O(n) worst

Add BST insertion O(log n) best O(n) worst

Remove BST deletion O(log n) best O(n) worst
AVL Trees

Balanced tree named after Adelson, Velskii and Landis. AVL trees consist of a special case in
which the sub-trees of each node differ by at most 1 in their height. Due to insertion and deletion
tree may become unbalanced, so rebalancing must be done by using left rotation, right rotation or
double rotation.

Operation Algorithm Time complexity

Search AVL search O(log n) best, worst
Add AVL insertion O(log n) best, worst
Remove AVL deletion O(log n) best, worst

Priority Queues

Priority queue is a queue in which the elements are prioritized. The least element in the priority
queue is always removed first. Priority queues are used in many computing applications. For
example, many operating systems used a scheduling algorithm where the next process executed is
the one with the shortest execution time or the highest priority. Priority queues can be
implemented by using arrays, linked list or special kind of tree (I.e. heap).

e Dboolean isEmpty ();
Return true if and only if this priority queue is empty.

By Bhupendra aud Jfage 26

Downloaded from CSIT Tutor

ﬁeblgn fnd nalysis of glgorithms (Dig?) New Summit College (B.§c.€5T)

int size ();
Return the length of this priority queue.

e int getlLeast ();
Return the least element of this priority queue. If there are several least elements, return
any of them.

e void clear ();
Make this priority queue empty.

e void add (int elem);
Add elem to this priority queue.

e intdelete(); Remove and return the least element from this priority queue. (If there are
several least elements, remove the same element that would be returned by getLeast.

Operation | Sorted Unsorted Sorted Unsorted Array
add o(n) 0(1) o(n) 0(1)
removeLea | O(1) O(n) O(1) O(n)
getLeast 0o(1) o(n) o(1) o(n)
Heap

A heap is a complete tree with an ordering-relation R holding between each node and its
descendant. Note that the complete tree here means tree can miss only rightmost part of the bottom
level. R can be smaller-than, bigger-than.

E.g. Heap with degree 2 and R is “bigger than”.

fé& iw

Not a heap

Heap Sort Build a heap from the given set (O(n)) time, then repeatedly remove the elements from
the heap (O(n log n)).

Implementation

Heaps are implemented by using arrays. Insertion and deletion of an element takes O(log n) time.

Operation | Algorithm Time complexity
add insertion O(log n)
delete deletion O(log n)
getLeast access root element | O(1)
By Bhupendra aud Jfage 27

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
@ UNIT 2 g]

DIVIDE AND CONQUER ALGORITHMS
(Sorting Searching and Selection)

@CHAPTE]RI 1

Sorting
Sorting is among the most basic problems in algorithm design. We are given a sequence of items,

each associated with a given key value. The problem is to permute the items so that they are in
increasing (or decreasing) order by key. Sorting is important because it is often the first step in
more complex algorithms. Sorting algorithms are usually divided into two classes, internal sorting
algorithms, which assume that data is stored in an array in main memory, and external sorting
algorithm, which assume that data is stored on disk or some other device that is best accessed
sequentially. We will only consider internal sorting. Sorting algorithms often have additional
properties that are of interest, depending on the application. Here are two important properties.

In-place: The algorithm uses no additional array storage, and hence (other than perhaps the
system’s recursion stack) it is possible to sort very large lists without the need to allocate
additional working storage.

Stable: A sorting algorithm is stable if two elements that are equal remain in the same relative
position after sorting is completed. This is of interest, since in some sorting applications you sort
first on one key and then on another. It is nice to know that two items that are equal on the second
key remain sorted on the first key.

Merge Sort
This sorting algorithm based on the divide and conquers strategy.
Tosortanarray A[l...r]:

» Divide
— Divide the n-element sequence to be sorted into two subsequences of each size n/2
« Conquer

— Sort the subsequences recursively using merge sort. When the size of the sequences is 1
there is nothing more to do.
+ Combine
— Merge the two sorted subsequences

Tracing:
Al1=4{4,7,2,6,1,4,7,3,5, 2,6}
Solution:
Dividing:

>

By Bhupendra aud Jfage 28

Downloaded from CSIT Tutor

opebl;:gn dnd Enalysis of d?{go'cit/mu onoQ) New Summit Col[ege wgc €5%d)

1 2 3 4 5 6 7 u a 10 11
4 | 7 |2 |6 14 |7 | 3|5 |2]|6

1 2 3 A 5 151 7 =] 10 11
4 | 72]|6]| 1] 4 7138126
“f—",_r*—_\x“ A
1 =2 4 = 5 7 &8 9 10 11
417 |2 611]4 7 8] 5 2]se
1 2 4 =] |5 7 8 9 10 11
417 2 6 1 =) 7 3 5 2 6
1 2 4 5 7 g
4 7 6 1 7 3
Merging:

1 2 3 4 £ B 7 8 g 1m0 1"
1 2141 4 6 ré 2 3 D 51 7
1 2 3 4 5 6 7 8 g 10 11
2 417 1 4 6 3 5| 7 216
1 2 3 4 5 5 7 8 9 10 1"
4 |7 2 1 6 4 217 5 2 6
1 2 4 5 7 a
4 7) 1 / 3
Algorithm:
MergeSort(A, I, 1)
{
If(lI<r)
/ICheck for base case
m=L(1+r)2] /IDivide
By Bhupendea §aud GPagess

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

MergeSort(A, I, m) //Conquer
MergeSort(A, m+ 1, r) //Conquer
Merge(A, I, m+1,r) //Combine
}
}
Merge(A,B,I,m,r)
{
x=l, y=m;
k=I;
while(x<m && y<r)
{
f{f(A[X] <Al
B[k]= A[X];
k++;
X++:
}
else
{
BLK] = Alyl;
k++;
y++;
}
}
while(x<m)
ALK] = A[x];
k++; x++;
}
while(y<r)
ALK] = Alyl;
K++; y++;
}
for(i=l;i<=r; i++)
{
Ali] = BI[i]
}
Time Complexity:
Recurrence Relation for Merge sort:
T(n)=1 if n=1
T(n) =2 T(n/2) + O(n) if n>1

Solving this recurrence we get,
Time Complexity = T(n) = O(n log n)

By Bhupendra aud Jfage 30

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Space Complexity:
It uses one extra array and some extra variables during sorting, therefore
Space Complexity=2n + ¢ = O(n)

Quick Sort
« Divide
Partition the array A[l...r] into 2 sub-arrays A[l...m] and A[m+1...r], such that each
element of A[l...m] is smaller than or equal to each element in A[m+1...r]. Need to find
index p to partition the array.

« Conquer
Recursively sort A[p...q] and A[g+1...r] using Quick sort
» Combine
Trivial: the arrays are sorted in place. No additional work is required to combine them.
|t 1 -,
FPartition 1 | lcewy Partition 2
TFalines=lcew | | Talues=loenr

5 3 2 6 4 1 3 7

X y
5 3 2 6 4 1 3 7
X y {swap x & y}
5 3 2 3 4 1 6 7
X y
5 3 2 3 4 1 6 7
y x {Sincé x and y are Cross so swap y and
pivot}
(1 3 2 3 4) 5 (6 7)
P
(1 3 2 3 4) 5 (6 7)
X y X y
(1 3 2 3 4) 5 (6 7)
y X y X
1 (3 2 3 4) 5 6 (7)
X y
1 (3 2 3 4) 5 6 7
y X
By Bhupendra aud Jfage 37

Downloaded from CSIT Tutor

ﬂeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
4)

1 @2 3 3 5 6 !
p
1 (2 3 (3 4 5 6 !
X y
1 2 3 @ 4 5 6 7
y X
Algorithm:
QuickSort(A,lr)
{
if(l<r)
{
p = Partition (A, |, 1);
QuickSort (A, |, p-1);
QuickSort (A, p+1, 1);
}
}
Partition(A,l,r)
{
x=l;y=r; p=A[ll;
while(x<y)
{
do {
X++;
Ywhile(A[X] <= p);
do {
y--;
} while(A[y] >=p);
if(x<y)
} swap(A[x],Aly]);
All] = AlyL; Alyl = p;
returny; //return position of pivot
}

Time Complexity:
We can notice that complexity of partitioning is O(n) because outer while loop executes cn times.
Thus recurrence relation for quick sort is:

T(n) = T(k) + T(n-k-1) + O(n)

Best Case:
Divides the array into two partitions of equal size, therefore
T(n) = 2T(n/2) + O(n) , Solving this recurrence we get,
= Time Complexity = O(n log n)

By Bhupendra aud Jfage 32

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms QDd@dq) New Summit €ollege wgcfgw)
n n
A
nﬂ/ \nn et | [T n
nf4/ \n/4 ﬂl4‘\/ \/"/‘4_\...".................E;n- n

‘g n ﬂ}{ \nfﬂ n/§/ >§ .7’1/8‘/ ?/8‘ ’?/‘é ,,,!fISN B 1= n

‘Lill'l‘lli11illlill111""'""‘5"'_i—
O(nlgn)

Worst case:

When array is already sorted or sorted in reverse order, one partition contains n-1 items and
another contains zero items, therefore

T(n) = T(n-1) + O(1), Solving thi
= Time Complexity = O(n?)

S recurrence we get

Case between worst and best (Average case):

Average case occurred when the elements are divided into ratio 9:1.
Then the recurrence relation for this case is,

T (n) =T (9n/10) + T (/10) + O (n),

By solving this recurrence we get

Time Complexity = T(n) = O (n log n)
n -
A A / \
1 9
< -1-6 n _16 n n
log,gn — \-9\ . — \;
1 ,
-_—n e H — —n-..................--..|||-- n
100 100 100 100
log, o9 7 / \ !\, /N / \
/ 81 729 N
‘L 1 1000 n 1000 n
/\ 7\ _
’ v \‘ f— ...:!||- Sﬂ
\
Y 1 e <
O(nlgn)

Randomized Quick Sort:

The algorithm is called randomized if its behavior depends on input as well as random value
generated by random number generator. The beauty of the randomized algorithm is that no
particular input can produce worst-case behavior of an algorithm. IDEA: Partition around a
random element. Running time is independent of the input order. No assumptions need to be made

By Bhupendra aud

dfage 33

Downloaded from CSIT Tutor

Design Fnd Rnalysis of Rlgorithms QDd@dq) New Summit €ollege wgcfgw)
about the input distribution. No specific input elicits the worst-case behavior. The worst case is

determined only by the output of a random-number generator. Randomization cannot eliminate the
worst-case but it can make it less likely!

Algorithm:
RandQuickSort(A,l,r)
{
if(I<r)
{
m = RandPartition (A, |, r);
RandQuickSort (A, I, m-1);
RandQuickSort (A, m+1, r);

}
}
RandPartition (A, I, 1)
{
k = random (I, r); //generates random number between i and j including both.
swap(A[I],A[K);
return Partition(A, I, r);
}
Partition (A, I, 1)
{
x=ly =r; p=Alll;
while(x<y)
{
do {
X++;
Iwhile(A[X] <= p);
do {
y--i
} while(Aly] >=p);
if(x<y)
, swap(A[X],Aly]);
Alll = Alyl; ALyl = p;
returny; //return position of pivot
}
Time Complexity:
Worst Case:
T(n) = worst-case running time
T(n) =max; <k<na (T(K) + T(N-K)) +ON)..evvininiiiiin, (1)

Where, k is some partitioned point produced by random number generator.
Now, by using substitution method to show that the running time of Quick sort is O (n?
Guess T (n) = O (n)
=5 T (M) SCN% oo, (2)
Now proof this by using mathematical induction

By Bhupendra aud Jfage 34

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Basic step: - for n=1,
T(1)<c. 12
Or 1< ¢ which is true for ¢ >0

Inductive step:-

Let’s assume that it is true for allk <n

i.e. T(k) < ck®forany k<n

it is also true for k=n-k,

i.e. T(n-k) <c (n-k)?

Now equation 1 becomes,
T(n) < max ;| <k<n1 (ck? + c(n-k)?) + O(n)
= ¢ - maX; <k<n1 (K* + (n-k)?) + O(n)

The expression k? + (n-k)? achieves a maximum over the range 1 <k < n-1 at one of the endpoints
max; <x<n1 (K +(n-k)?) =12+ (n-1)*>=n-2(n-1)
T(n) < cn® — 2¢(n — 1) + O(n)
<cn
=> T(n)=0(n’)

Average Case:

To analyze average case, assume that all the input elements are distinct for simplicity. If we are to
take care of duplicate elements also the complexity bound is same but it needs more intricate
analysis. Consider the probability of choosing pivot from n elements is equally likely i.e. 1/n.

Now we give recurrence relation for the algorithm as
—=

T(n) = 1/n w

Forsome k =1, 2... n-1, T(k) and T(n-K) is repeated two times

T(n) = 2/n kzlﬁk)m

nT(n) = 2:Z_:T (K) + O, (1)
Similarly
(n-1)T(n-1) = 2KZ_)T(k) O(-1)% @)

Subtracting equation 1 from 2 we get,

nT(n) - (n-1)T(n-1) = ZZZ_:T (k) +o(n? - ZZZT(k) +0(n-1)?

or, n”T(n) - (n-1)T(n-1) = ZZZT(k) - ZZZT (k) + o(n?) - O(n-1)

=2T(n-1) + n?—n®* +2n -1
=2T(n-1) +2n -1
or, nT(n) = (n-1)T(n-1) + 2T(n-1) +(2n -1)
=T(n-1) [(n-1) +2]+ (2n -1)

By Bhupendra aud Jfage 35

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
= (n+1)T(n-1) + (2n -1)

Or, nT(n) — (n+1) T(n-1) = 2n-1

Dividing both sides by n (n+1) we get
T(n)/(n+1) = T(n-1)/n +(2n -1)/n(n+1)

Let An=T(n) /(n+1)

= An = Ana + (2n-1)/n(n+1)

N
= An= >A—ViGE+D [since recurrence rel” of sum of first n natural number is sh=sn.1 +n]
=
n -
= An= Z?ha +D
i=

= An=?2 ZUG +D
i=1

This is a Harmonic series,
Hence An=2logn................c.oooiinin. 3)
Since An =T(n) /(n+1)
Or, 2 log(n) = T(n) /(n+1)
=>T(n) = 2 (n+1) log(n)
Or, T(n) = 2n logn +2logn
=>T(n) = O(n log n)

Heap Sort

A heap is an almost complete binary tree of n nodes such that the value of each node is less than or
equal to the value in parent node. This type of heap is called max heap. By default the heap is max
heap.

15 |19 |10 | 7 17 | 16 o

/ (16
@ GG

Fig Heap of given array of elements

Array Representation of Heaps
A heap can be stored as an array A.
— Root of tree is A[1]
— Left child of A[i] = A[2i]
— Right child of AJi] = A[2i + 1]
— Parent of A[i] = A[Li/2]]
— Heapsize[A] < length[A]

By Bhupendra aud Jfage 36

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
The elements in the sub-array A[(Ln/2J+1) .. n] are leaves
Il 2 3 4 5 6 7 8 9 10
%

Y

16|14(10| 8|7 19(3]|2 |4

Max-heaps (largest element at root), have the max-heap property:
— for all nodes i, excluding the root:
A[PARENT(i)] > A[i]
Min-heaps (smallest element at root), have the min-heap property:
— for all nodes i, excluding the root:
A[PARENT(i)] < A[i]

Adding/Deleting Nodes
New nodes are always inserted at the bottom level (left to right) and nodes are removed from the
bottom level (right to left).

50)
—a
N ™
24) |
Y %
~ = N ™~
L 20 ' 31) V18) L3)
N 2>/ °

Operations on Heaps
» Maintain/Restore the max-heap property
- MAX-HEAPIFY
» Create a max-heap from an unordered array
- BUILD-MAX-HEAP
» Sort an array in place
- HEAPSORT

By Bhupendra aud dfage 37

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Heapify Property
If any node violets the heap property then swap this node with it’s larger children to maintain the
heap property, this operation is called heapify.
MAX-HEAPIFY operation:

¢ Find location of largest value of:

A[1], Al Left(i)] and A[Right(i)]

e Ifnot A[1], max-heap property does not hold.

e Exchange A[i] with the larger of the two children to preserve max-heap property.

e Continue this process of compare/exchange down the heap until sub-tree rooted at i is a

max-heap.

e At a leaf, the sub-tree rooted at the leaf is trivially a max-heap.

Example:

Algorithm:
Max-Heapify(A, i, n)
{
| = Left(i)
r = Right(i)
largest=i;
if 1<nand A[l] > A[largest]
largest = |
if r <nand A[r] > A[largest]
largest =r
if largest = i
exchange (A[i] , A[largest])
Max-Heapify(A, largest, n)
}

By Bhupendra aud Jfage 38

Downloaded from CSIT Tutor

ﬂeblgn oind Enalysis of d@{gotit/mu onqoq) New Summit College GB 5. €5%T)
Analysis:

In the worst case Max-Heapify is called recursively h times, where h is height of the heap
and since each call to the heapify takes constant time
Time complexity = O(h) = O(logn)

Building a Heap
The process of converting a given binary tree into a heap by performing heap operation on each of
the non-leaf node of the tree is known as building heap operation.

Convert an array A[1 ... n] into a max-heap (n = length[A]). Apply MAX-HEAPIFY on elements
between 1 and [.n/2..

Example:

2 /g2 2/ \L 2/ \Y
O € O © O ©
4 /// '\,\ E /// b 4 \\ E 8 // “\ 7 ﬂ_ \\ § E \ 7

(B @, b6 b, @ 86

Sy A q_» IO._/
M @

oBg oB/mpend‘m Saud (fage 39

Downloaded from CSIT Tutor

Design gnd gnalysis of ftlgorithms (Pfrgt) New ummit College (B.8.C5UT)
) |
; b i
vk ,” \ /TN
df \ g 2/ N X / A VA
16 10 14 10'
8, . Q N U e |

ﬂ;f 7

(AR CCR YT AR IORR N of JoofRo
(0@ @ (BUJ @ @Q

Algorithm:
Build-Max-Heap(A)
{
n = length[A]
for (i=Ln/2] ; i>=1; i--)
{

MAX-HEAPIFY (A, i, n);
}

Time Complexity:
Running time: Loop executes O(n) times and complexity of Heapify is O(logn), therefore
complexity of Build-Max-Heap is O(n log n).
This is not an asymptotically tight upper bound
Heapify takes O(h)

= The cost of Heapify on a node i is proportional to the height of the node i in the tree
h

= TM)= 2, nh

i=0
hi =h—1i height of the heap rooted at level i
=2 number of nodes at level i

— T(n) = Zol 2i(h-i)

=

= T(n) = 2. 2"(h-i)/2"

i=0

Let k= h-i
h
ST =2"D, ki/2*

i=0

h 0
STM)2" D, K/25<2" D0 KI2 (1)
i=0 i=0
By Bhupendra aud Page 40

Downloaded from CSIT Tutor

ﬁeblgn Fnd Rnalysis of Rlgorithms Qqud@)

We know that, 2, x* = 1/(1-x) for x<1

i=0
Differentiating both sides we get,

o0

2 kXt = 1/(1-x)?

D kX< = x/(1-x)?
i=0
Put x=1/2

k /2% = 1/(1-x)*= 2
i=0

Now equation 1 becomes,

o0

Tm)<2" D, k/2¥

i=0
<2".2
S 2Iogn* 2
<2n
= T(n) = O(n)

Heapsort

e Build a max-heap from the array

Example: A[]1={4, 1, 3, 2,16, 9, 10, 14, 8, 7}

sol™: At first construct a binary tree of given array,

New Summit College (B.§c.€5T)

Swap the root (the maximum element) with the last element in the array
“Discard” this last node by decreasing the heap size

Perform Max-Heapify operation on the new root node

Repeat this process until only one node remains

By Bhupendra aud

dfage 47

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Now construct a heap of given tree as,

Heap sort:-

swap(1,10) a heapify(A.1) 9
@ Y0}
ADOOD S ©
() (D8
swap(1, 9) e heapify(A.1) @
oo >
® O D&

heapify(A,l): a
5
O OOLWO

.
Y
.
Q . .

By Bhupendra aud Page 42

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
swap(1, 7)

heapify(A.1),

s
.
Q . . * o
O ., N
@ g @ o .

swap(1, 6)
heapify(A,1)

. .
A Y
- .
o . o .
. Y . J I .I -.H .'

swap(l, 5) heapify(A,1) >

..
..
» .,
M ..
«
v

%
.
. N
. > .
. : .
g3
..
- ..
g3
.
0 e o ., .
o ., .
. > *, .
O ., ; >
K * .

swap(1, 4)
heapify(A.1)

Z 4
% > % D (S -
. . * . » *,
g . > b
g3 K e D Y
A
0 . g @ @
K :
. - I
P> * pJ -

By Bhupendra aud Jfage 43

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

swap(1, 3)
@ heapify(A,1) @

@@‘@ @.
oo o@oo ©

swap(1, 2) @ heapify(A,1) @

Algorithm:

HeapSort(A)

{
BuildHeap(A); //into max heap
n = length[A];
for(i=n;i>=2;i-)

swap(A[1],A[n]);

n=n-1;
Heapify(A,1);
}
}
Analysis:

Build heap takes O(n) time

For loop executes at most O(n) time

Within for loop heapify operation takes at most O(log n) time
Thus total time complexity T(n) = O(n) + O(n) (log n)
=>T(n) =0(nlog n)

By Bhupendra aud Jfage 44

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Sorting comparisons:

Sort Worst Case | Average Case Best Case Comments
Insertion Sort =in’) =(n) =)

Selection Sort -y n:] =M n:] =) nEJ {*Unstable)
Bubble Sort @(n”) G(n”) G(n”)

Merge Sort Enlogn) S(nlogn) &nlogn) | Requires Memory
Heap Sort =inlogn) G nlogn) &(nlogn) | *Large constants
Quick Sort En’) = nlogn) = nlogn) | *Small constants

Searching

Searching is to look for something in a list or an array.

Sequential Search
Simply search for the given element left to right and return the index of the element, if found.
Otherwise return “Not Found”.

Algorithm:
LinearSearch(A, n, key)
{
for(i=0;i<n;i++)
if(A[i] == key)
return I;
}
return -1;//-1 indicates unsuccessful search
}
Analysis:

Time complexity T(n) = O(n)

Binary Search:

Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval
covering the whole array. If the value of the search key is less than the item in the middle of the
interval, narrow the interval to the lower half. Otherwise narrow it to the upper half. Repeatedly
check until the value is found or the interval is empty.

cearching in first half of array searching in second halt of array

) % x

First walue tnid walue Last walue

| Mlid= (first + lastii2
oBg oB/mpend‘m Saud

dfage 45

Downloaded from CSIT Tutor

http://xlinux.nist.gov/dads/HTML/sortedarray.html
http://xlinux.nist.gov/dads/HTML/key.html

Design Fnd Rnalysis of Rlgorithms Qqud@) New Summit €ollege GB 5. €5%T)
Steps:
Algorithm is quite simple. It can be done either recursively or iteratively:
1. get the middle element;
2. if the middle element equals to the searched value, the algorithm stops;
3. otherwise, two cases are possible:
o If searched value is less, than the middle element. In this case, search item in first
half.
o If searched value is greater, than the middle element. In this case, search item in
second half.
Continue this process until we get desired element in the list or the list is empty.

Example 1: Find 6in{-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.
Step 1 (middle elementis 19>6): -1 56 18 19 25 46 78 102 114
Step 2 (middle elementis5<6): -1 56 18

Step 3 (middle element is 6 == 6): 6 18

Example 2: Find 103 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

Step 1 (middle element is 19 <103): -1 5 6 18 19 25 46 78 102 114

Step 2 (middle element is 78 < 103): 25 46 78 102 114
Step 3 (middle element is 102 < 103): - 102 114
Step 4 (middle element is 114 > 103): 114

Step 5 (searched value is absent):

Algorithm
BinarySearch(A, |, r, key)
if(l==r)
{
if(key = = A[l])
return I+1; //index starts from O
else
return 0;
}
else
{
m = (1 +r) /2 ; //integer division
if(key = = A[m]
return m+1;
else if (key < A[m])
By Bhupendra aud Jfage 46

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
return BinarySearch(l, m-1, key) ;
else
return BinarySearch(m+1, r, key) ;

ky

Analysis:
From the above algorithm we can say that the running time of the algorithm is:

T(n) = T(n/2) + O(1)

= O(logn) .

In the best case output is obtained at one run i.e. O(1) time if the key is at middle. In the worst case
the output is at the end of the array so running time is O(log n) time. In the average case also
running time is O(logn). For unsuccessful search best, worst and average time complexity is
O(logn).

Selection

i™ order statistic of a set of elements gives i™ largest(smallest) element. In general let’s think of i™"
order statistic gives i" smallest. Then minimum is first order statistic and the maximum is last
order statistic. Similarly a median is given by i order statistic where i = (n+1)/2 for odd n and i =
n/2 and n/2 + 1 for even n. This kind of problem commonly called selection problem.

This problem can be solved in O(n log n) in a very straightforward way. First sort the elements in
O(n log n) time and then pick up the i" item from the array in constant time. What about the linear
time algorithm for this problem? The next is answer to this.

Nonlinear general selection algorithm
We can construct a simple, but inefficient general algorithm for finding the k ™ smallest or k™
largest item in a list. This is efficient when k is small. To accomplish this, we simply find the most
extreme value and move it to the beginning until we reach our desired index.

Select(A, Kk, n)

{
for(i=0; i <k; i++)
{
minindex = i;
minvalue = A[i];
for(j=i+1; j < n; j++)
{
if(A[j] < minvalue)
minindex = j;
minvalue = A[j];
}
swap(A[i], A[minindex]);
}
}
By Bhupendra aud dfage 47

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
return A[K];
k

Analysis:
When i=0, inner loop executes n-1 times
When i=1, inner loop executes n-2 times
When i=2, inner loop executes n-3 times
When i=k-1 inner loop executes n-(k-1+1) times
Thus, Time Complexity = (n-1) + (n-2) +ooooevinen (n-K)
In worst case if k=n then,
T(n)=0+1+2+3+4+........... +(n-2)+(n-1)
=n(n-1)/2 [since s,=n(n+1)/2]
=0(nd

Selection in expected linear time
This problem is solved by using the “divide and conquer” method. The main idea for this problem
solving is to partition the element set as in Quick Sort where partition is randomized one.
Algorithm:

RandSelect(A, |, r, i)

{
if(l==r)
return A[I];
p = RandPartition(A, 1, r);
k=(p—1+1);
if(i <k)
return RandSelect(A, I, p-1, i);
else
return RandSelect(A, p+1,r,i-K);
}
RandPartition (A, I, 1)
{

k = random (1, r); //generates random number between i and j including both.
swap(A[lLALK]);
return Partition(A, I, r);

¥
Partition (A, I, 1)
{
x=ly=r;p=A[l;
while(x<y)
{
do {
X++;
while(A[X] <= p);
do{
y--,
By Bhupendra aud Jfage 48

Downloaded from CSIT Tutor

ﬂeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
} while(A[y] >=p);

if(x<y)
swap(A[X]ALY);
Alll = AlYT;
Alyl = p;
returny; //return position of pivot
}
Analysis:

Since our algorithm is randomized algorithm no particular input is responsible for worst case
however the worst case running time of this algorithm is O(n?). This happens if every time
unfortunately the pivot chosen is always the largest one (if we are finding minimum element).
Assume that the probability of selecting pivot is equal to all the elements i.e 1/n then we have the
recurrence relation, Conquer time

(0 = Un(2, T(maxd’, n-)) + é(m\

Where, max(j, n-j) = j, if j >=[n/ 2]

and max(j, n-j) = n-j, otherwise.
Here every T(j) or T(n — j) will repeat twice, one time from 1 to[n / 2 | and second time from
[n/2]to (n-1), so we can write,

Dividing time

T(n) = 2/n(,-;2 10)) B () I (1)

Using substitution method,
Guess T(n) = O(n)
Then we have to show that T(n) <cn.................... (2)
Basic step: for n=1,

T(l)<c.!1
=> 1 < ¢ which is true for all ¢ >0
Inductive step: let’s assume that it is true for all j<n
ThenT(G) <CJevrviiiiiiiiiiiiieen 3)
Substituting on the relation (1) we get,

n-1

T(n) <2/n .;2 cj + O(n)

| =

-1

n-1
Or, T(n) <2/n {Z cj -
j=1

S ¢ 3o

Q_pml-1+1)

=2In{ L Ut B A €} +0(n)
2 2
n

n(—=-1)

—oin{ c. ”(”2‘1) 2 " cyi0Mm)
By Bhupendra aud Jfage 49

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
= ¢(n-1) - %(nlz _1)+0(n)

=cn—-c—cnfd+c/l2+cn
=cn-[c+cn/4-c/2-cn]
<cn

=>T(n) = O(n)

Selection in worst case linear time:
e Divide the n elements into groups of 5 elements.
e Find the median of each group, which gives Ln/jf[J medians.
e Recursively SELECT the median x of the ln/5 medians to be the pivot element. Let k be
the index of such a pivot element.
e Partition the n elements around pivot:
if (i==K) then
Return (A[K])
else if (i < k) then
Recursively to find i smallest element in first partition

else
Recursively to find (i-k)™ smallest element in second partition

- e T——

—— N —
ol % 5 >0 SO X O

From above figure at least half the medians are < X

Since there are [nISJ medians
ThereforenT/5 medians are < X

Or, n/10 medians are < X

Since each medians contribute 3 elements which are < X
=> 3 n/10 elements are < X

Similarly, at least 3n/10elements are > X

Since there are total n elements

If 3 n/10 elements are < X

Then (n-3 n/10) =7n/10 elements are > X

Now it’s recurrence relation is,

T(n) = T(n/5) + T(7n/10) + O(n)

Lets guess T(n)=0O(n)

By Bhupendra aud Jfage 50

Downloaded from CSIT Tutor

ﬁeblgn Fnd Rnalysis of Rlgorithms Qqud@)

=>T(M) SC Mttt e (1)

Now proof this by using mathematical induction as,

Basic step: for n=1,
T(1)<c.1
=>] < ¢ which is true for all ¢ >0
Inductive step: let’s assume that it is true for all k<n
Then T(k) <ck..ooviviiiiiii. (2)

It is also true for k=n/5 and 7n/10,

=>T(n/5) <c.n/5

Also T(7n/10) <c. 7n/10

Now from given recurrence relation,

T(n) = T(n/5) + T(7n/10) + O(n)

T(n) <cw/5+c. 70/10 + O(n)
<cn-4cn/5+7cn/l10+cn
<cn-cn[4/5-7/10-1]
<cn

=T(m)<cn

Thus T(n)=O(n)

Max and Min Finding

New Summit College (B.§c.€5T)

Here our problem is to find the minimum and maximum items in a set of n elements. Iterative

Divide and Conguer Algorithm for finding min-max:

Main idea behind the algorithm is: if the number of elements is 1 or 2 then max and min are
obtained trivially. Otherwise split problem into approximately equal part and solved

recursively.
MinMax(l, r)
{
ifl==r)
max = min = A[l];
else if(l =r-1)
if(A[l] < A[r])
{
max = A[r];
min = A[l];
}
else
{
max = A[l];
min = AJr];
}
}
else

/[Divide the problems
mid = (I + r)/2; //integer division
/Isolve the subproblems

By Bhupendra aud

dfage 57

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
{min,max}=MinMax(l,mid);
{minl,max1}= MinMax(mid +1,r);
/[Combine the solutions
if(max1 > max) max = maxl;
if(minl < min) min = minl;
}
}
Analysis:
We can give recurrence relation as below for MinMax algorithm in terms of number of
comparisons.
T(n)=2T(n/2)+1,ifn>2
Tn)=1,ifn<2
Solving the recurrence by using master method complexity is (case 1) O(n).

Matrix Multiplication

Given two A and B n-by-n matrices our aim is to find the product of A and B as C that is also n-
by-n matrix. We can find this by using the relation

Cij)= 2 AKB(K)
MatrixMultiply(A,B)

{
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
for(k=0;k<n;k++)
{
C[i1LI = CLihl+ ALTIKI*BIK]0];
}
}
}

Analysis:
Using the above formula we need O(n) time to get C(i,j). There are n? elements in C hence the

time required for matrix multiplication is O(n*). We can improve the above complexity by
using divide and conquer strategy.

Divide and Conquer Algorithm for Matrix Multiplication

Divide the n x n square matrix into four matrices of size n/2 x n/2. The basic calculation is
done for matrix of size 2 x 2.

Ci1 Ci12 All Al2 Bl1l B12
C21 C22 A21 A22 B21 B22
Where
Cl1= Al1 xB11 + Al12x B21
By Bhupendra aud Jfage 52

Downloaded from CSIT Tutor

ﬁeblgn Fnd Rnalysis of Rlgorithms Qqud@)
Cl2=Al1 xB12 + A12 x B22
C21=A21 xB11 + A22 x B21
C22=A21 xB12 + A22 x B22

Now, we can write recurrence relation for this as
T(n)=b if n<2
T(n)=8T(n/2) +cn® if n>2

Solving this we get, T(n) = O(n®)

Strassens’s Matrix Multiplication

New Summit College (B.§c.€5T)

Strassen showed that 2x2 matrix multiplication can be accomplished in 7 multiplication and

18 additions or subtractions.

The basic calculation is done for matrix of size 2 x 2.

Cl1 C12 All Al2
C21 C22 A21 A22
Where;

P1 = (Awr+ A2)(B11+B2))

P2 = (A2 + Ax) * Bus
P3=A1 * (B2 - Bx)

Ps= Ay * (B2 - B1y)

Ps = (A + A) * B2

Ps = (A2 - A11) * (B11 + B1o)
P7 = (A2 - Azz) * (Ba1 + Byy)

C11=P1+Ps-Ps+P;

C12=P3+Ps

Co=P2+Py

Co2=P1+P3-Py+Pg

Now, We can write recurrence relation for this as

T(n) =b if n<2

T(n)= 7T(n/2) + cn?® if n>2

Solving this we get, T(n) = O(n*®)

B12

B22

oBg oB/zu/:en.d‘ta Saud

dlage 53

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Unit 2
Chapter: 2

Dynamic Programming

DP technique is among the most powerful for designing algorithms for optimization problems.
Dynamic programming problems are typically optimization problems (find the minimum or
maximum cost solution, subject to various constraints). The technique is related to divide-and-
conquer, in the sense that it breaks problems down into smaller problems that it solves recursively.
However, because of the somewhat different nature of dynamic programming problems, standard
divide-and-conquer solutions are not usually efficient. The basic elements that characterize a
dynamic programming algorithm are:

Substructure: Decompose your problem into smaller (and hopefully simpler) sub-
problems. Express the solution of the original problem in terms of solutions for smaller
problems.

Table-structure: Store the answers to the sub-problems in a table. This is done because
sub-problem solutions are reused many times.

Bottom-up computation: Combine solutions on smaller sub-problems to solve larger sub-
problems.

The most important question in designing a DP solution to a problem is how to set up the sub-
problem structure. This is called the formulation of the problem. Dynamic programming is not
applicable to all optimization problems. There are two important elements that a problem must
have in order for DP to be applicable.

Optimal substructure: (Sometimes called the principle of optimality.) It states that for the
global problem to be solved optimally, each sub-problem should be solved optimally. (Not
all optimization problems satisfy this. Sometimes it is better to lose a little on one sub-
problem in order to make a big gain on another.)

Polynomially many sub-problems: An important aspect to the efficiency of DP is that the
total number of sub-problems to be solved should be at most a polynomial number.

Fibonacci numbers

Recursive Fibonacci revisited:

In recursive version of an algorithm for finding Fibonacci number we can notice that for each
calculation of the Fibonacci number of the larger number we have to calculate the Fibonacci
number of the two previous numbers regardless of the computation of the Fibonacci number that
has already be done. So there are many redundancies in calculating the Fibonacci number for a
particular number. Let’s try to calculate the Fibonacci number of 4. The representation shown
below shows the repetition in the calculation.

By Bhupendra aud Jfage 54

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Fib(4)

Fib(3) Fib(2)

Fib(2) Fib(1) Fib(1) Fib(0)

Fib(1) Fib(0)

In the above tree we saw that calculations of fib(0) is done two times, fib(1) is done 3 times, fib(2)
is done 2 times, and so on. So if we somehow eliminate those repetitions we will save the running
time.
Algorithm:

DynaFibo(n)

A[0] =0;

All]=1,

for(i=2;i<=n;i++)

Ali] = A[i-2] +A[i-1] ;

return A[n] ;

}

Analysis
Analyzing the above algorithm we found that there are no repetition of calculation of the sub-
problems already solved and the running time decreased from O(2"2) to O(n). This reduction was
possible due to the remembrance of the sub-problem that is already solved to solve the problem of
higher size.

0/1 Knapsack Problem

Statement: A thief has a bag or knapsack that can contain maximum weight W of his loot. There
are n items and the weight of i item is w; and it worth vi. An amount of item can be put into the
bag is 0 or 1 i.e. x; is 0 or 1. Here the objective is to collect the items that maximize the total profit
earned.

Let W=Capacity of Knapsack

n=No. of items

W= {wl, W2, - , Wn} = weights of items

V=4{vl,v2,Vv3, == , Vn} = value of items

C[i, w] = maximum profit earned with item i and with knapsack of capacity w then

The recurrence relation for 0/1 knapsack problem is given as,

By Bhupendra aud dfage 55

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

0 if i=0 or w=0
Cli, w] = C[i-1,w] ifwi>w
Max{vi + C[i-1,w-wi], c[i-1,w] if i>0 and w>wi

Algorithm:
DynaKnapsack(W,n,v,w)

for(w=0; w<=W,; w++)

C[O,w] =0;
for(i=1; i<=n; i++)
C[1,0] =0;
for(i=1; i<=n; i++)
{
for(w=1; w<=W;w++)
{
if(w[i]<w)
if v[i] +C[i-1,w-w[i]] > C[i-1,w]
C[i,w] = v[i] +C[i-1,w-w[i]];
}
else
C[i,w] = CJ[i-1,w];
}
else
C[i,w] = C[i-1,w];
}
}
}
Analysis

For run time analysis examining the above algorithm the overall run time of the algorithm is

Oo(nW).

By Bhupendra aud Jfage 56

Downloaded from CSIT Tutor

ﬂeblgn Fnd Rnalysis of Rlgorithms Qqud@)

Example

New Summit College (B.§c.€5T)

Let the problem instance be with 7 items where v[] = {2,3,3,4,4,5,7}and w[] = {3,5,7,4,3,9,2}and

W =0,

sol™ for i=0 or w=0

c[i,w]=0

i.e. ¢[0,1]0=c[0,1]= ¢[0,2]= c[0,3]= c[0,4]= c[0,5]= c[0,6]= c[0,7]= c[0,8]= c[0,9]= ¢[1,0]=

c[1,1]=c[0,1]=0 since w;>W i.e. 3>1 so it satisfied second case of the recurrence relation

....... =0

c[1,3]= max{v1+c[0,3-3], c[0,3]}=max{2+0,0}=2 since W >= w1 i.e. 3>=3 so it satisfied the third

case.

Continue this process to calculate value of each cell and finally we get following table,

w |0 1 2 3 4 5 6 7 8 9
i
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 2 2 2 2 2 2
2 0 0 0 2 2 3 3 3 5 5
3 0 0 0 2 2 3 3 3 5 5
4 0 0 0 2 4 4 4 6 6 7
5 0 0 0 4 4 4 6 8 8 8
6 0 0 0 4 4 4 6 8 8 8
7 0 0 7 7 7 1 1 1 13
Profit= C[7][9]=15
Example 2:
W=3
Items ={i1, i2, i3}
wi={1, 2, 3}
vi={2, 3, 4}
soln: do itself
We get max profit=5
Matrix Chain Multiplication
Chain Matrix Multiplication Problem: Given a sequence of matrices A;, A; A, and

dimensions po, p1

............

pn, Where A is of dimension pi-; X pi, determine the order of multiplication
that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications; it just determines the best

order in which to perform the multiplications.

Although any legal parenthesization will lead to a valid result, not all involve the same number of

operations.

Consider the case of 3 matrices: Al be 5 x4, A2 be 4 x6 and A3 be 6 x 2.
multCost[((A1A2)A3)] =(5.4.6)+(5.6.2) =180
multCost[(AL(A2A3))]=(4.6.2)+(5.4.2) =88

By Bhupendra aud

Downloaded from CSIT Tutor

dlage 57

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Even for this small example, considerable savings can be achieved by reordering the evaluation
sequence.

Let Ai . j denote the result of multiplying matrices i through j. It is easy to see that A;_; is a pi-1 X p;
matrix. So for some k total cost is sum of cost of computing A;._«, cost of computing Ay, j, and
cost of multiplying A« and Aysi .

Ai x At

Ai, Ais, ... Ax A1, Akso, ... Aj

Here check all the possible sequences of matrices for all possible choices of k and take best
sequence among them.

Recursive definition of optimal solution: let m[j,j] denotes minimum number of scalar
multiplications needed to compute A;__;.

0 if i=] [if sequence contain only one matrix]
Cli,w] =
Min i <k < {{m[1,K]+ m[k+1,j] + pi-1pkp; ifi<j

Note:
m;, k has dimension i-1 X k
And my.1,j has dimension k X j

Algorithm:
Matrix-Chain-Multiplication(p)
{
n =length[p]
for(i=1i<=ni++)
{
mli, i]=0
for(I=2; I<=n; |++)
{
for(= 1; i<=n-1+1; i++)
{
j=i+l=1
m(i, j] = co
By Bhupendra aud Jfage 58

Downloaded from CSIT Tutor

ﬂeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
for(k=1; k<= j-1; k++)

{
c=m[i, k] + m[k + 1, j] + p[i—1] * p[k] * p[j]
if c<mli, j]
m[i, j]=c
s[i, j] =k
}
}
}
}
return mand s
}
Analysis

The above algorithm can be easily analyzed for running time as O(n%), due to three nested loops.
The space complexity is O(n?) .

Example:
Consider matrices Al, A2, A3 and A4 of order 3x4, 4x5, 5x2 and 2x3. Then find the optimal
sequence for the computation of multiplication operation.

M Table (Cost of multiplication) S Table (points of parenthesis)

j |1 |2 3 4 1 |2 3 4
i

1 |0 [60 |64

2 0 |40 |64 1 11 |3
3 0 |30 2 |3
4 0 3

-hwml—\/
N »

For m[1,1]= m[2,2]= m[3,3]= m[4,4]=0

m[1,2]= min {m[1, 1]+m[2,2]+p0*pl1*p2}=min{0+0+3*4*5}=60

m[2,3]= min {m[2, 2]+m[3,3]+pl*p2*p3}= (0+0+4*5*2)=40

m[1,3]= min {{m[1, 1]+m[2,3]+p0*pl1*p3}, { m[1, 2]+m[3,3]+p0*p2*p3}}=min{(0+40+3*4*2),(
60+0+3*5*2)}= min{64,90}= 64

and so on........

Now the optimal multiplication cost=82 with the optimal sequence is

(ALA2A3A4) => ((A1A2A3)(A4)) => (((AL1)(A2A3))(A4))

This means at first multiply matrix A2 and A3 then multiply their result with matrix Al and finally
multiply their result with A4.

By Bhupendra aud Jfage 59

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Longest Common Subseguence Problem(LCS)
This method is used to test the matching or similarities between the two strings.

Given two sequences X = (X1, X2, .vevvennnn. Xm)yand Z=(zy, 25, ,Zk), We say that Z is a

subsequence of X if there is a strictly increasing sequence of k indices (i, I,
........... < i) such that Z = (X1, X, Xik)-

ik) (1<i1< i<

For example, let X = (ABRACADABRA) and let Z = (AADAA), then Z is a subsequence of X.
Given two strings X and Y, the longest common subsequence of X and Y is a longest sequence Z

that is a subsequence of both X and Y.

For example, let X = (ABRACADABRA) and

Let Y = (YABBADABBAD). Then the longest common subsequence is
Z = (ABADABA)

Recurrence relation for LCS:
Let xi and yj represent any two sequences of characters.
L[i, j] represents the LCS of xi and yj then its recurrence relation is,

-
0 if i=0 or j=0 {If either of the
sequence is empty}
L[i, j] = < L[i-1, j-1]+1 if xi = y; {if last character of
both sequences match}
_ max {L[i-1, j], L[i, j-1]} if i>0, j>0 and xi£ yj

{if last character of both
sequences does not match}

Algorithm:
LCS(X,Y)
{
m = length[X];
n = length[Y];
for(i=1;i<=m;i++)
c[i,0] =0;
for(j=0;j<=n;j++)
c[0,j]=0;

for(i = 1;i<=m;i++)
for(j=1;j<=n;j++)
{

if(X[1==Y[i])
{
c[i][i] = c[i-1][-1]+1; bi][j] = “upleft™;

}

else if(c[i-1][j]>= c[i]l[j-1])

{

) cilli] = c[i-11[1; blil[] = “up”;

else

By Bhupendra aud

Downloaded from CSIT Tutor

dlage 60

opebl;:gn nd Analysis of tlgorithms on@a@)
;[i][i] = c[i][j-11; bli][j] = “left”;

{
}
return b and c;
}
Analysis:

New Summit College (B.§c.€5T)

The above algorithm can be easily analyzed for running time as O(mn), due to two nested loops.

The space complexity is O(mn).

Example:
Consider the character Sequences X=abbabba Y=aaabba find LCS

Y |O a a a b b a
X
) 0 0 0 0 0
a 0 1 1 1 1 1
b 0 1 1 2 2 2
b 0 1 1 2 3 3
a 0 1 2 upleft 2 3 4
b 0 1 2 2 3 upleft 3 4
b 0 1 2 2 3 4 upleft 4
a 0 1 2 3 3 4 5 upleft. |
LCS=aabba

Example 2: Given two sequence of characters
P=<M LN O M>

Q=<M N O M> find LCS

Soln: Do itself

We get LCS=MNM

OB# oB/mpend‘m Saud

Downloaded from CSIT Tutor

dfage 67

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Chapter: 3

Greedy Paradigm

Greedy method is the simple straightforward way of algorithm design. The general class

of problems solved by greedy approach is optimization problems. In this approach the input
elements are exposed to some constraints to get feasible solution and the feasible solution that
meets some objective function best among all the solutions is called optimal solution. Greedy
algorithms always makes optimal choice that is local to generate globally optimal solution
however, it is not guaranteed that all greedy algorithms yield optimal solution. We generally
cannot tell whether the given optimization problem is solved by using greedy method or not, but
most of the problems that can be solved using greedy approach have two parts:

Greedy choice property

Globally optimal solution can be obtained by making locally optimal choice and the choice at
present cannot reflect possible choices at future.

Optimal substructure

Optimal substructure is exhibited by a problem if an optimal solution to the problem contains
optimal solutions to the sub-problems within it.

To prove that a greedy algorithm is optimal we must show the above two parts are exhibited. For
this purpose first take globally optimal solution; then show that the greedy choice at the first step
generates the same but the smaller problem, here greedy choice must be made at first and it should
be the part of an optimal solution; at last we should be able to use induction to prove that the
greedy choice at each step is best at each step, this is optimal substructure.

Fractional Knapsack Problem

Statement: A thief has a bag or knapsack that can contain maximum weight W of his loot. There
are n items and the weight of i* item is wiand it worth vi. Any amount of item can be put into the
bag i.e. xi fraction of item can be collected, where 0<=xi<=1. Here the objective is to collect the
items that maximize the total profit earned.

Here we arrange the items by ratio vi/wi.

Algorithm:
GreedyFracKnapsack (W, n)
{
for(i=1; i<=n; i++)
x[i] = 0.0;
tempW =W,
for(i=1; i<=n; i++)
{
if(w[i] > tempW) then
break;
x[i] = 1.0;
tempW -= w[i];
}
if(i<=n)
X[i] = tempW/w[i];
}
By Bhupendra aud Jfage 62

Downloaded from CSIT Tutor

ﬂeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Analysis:

We can see that the above algorithm just contain a single loop i.e. no nested loops the running time
for above algorithm is O(n). However our requirement is that v[1 ... n] and w[1 ... n] are sorted,
SO We can use sorting method to sort it in O(n log n) time such that the complexity of the algorithm
above including sorting becomes O(n log n).

Example: Consider five items along with their respective weights and values,
| ={I1, 12,13, 14, 15}
w = {5, 10, 20, 30, 40}
v = {30, 20, 100, 90, 160}
The knapsack has capacity W=60, then find optimal profit earned by using fractional knapsack.

Sol™ Initially
Items wi Vi
11 5 30
12 10 20
13 20 100
14 30 90
15 40 160
Step 2: calculate vi/wi as,
Items wi Vi Pi=vi/wi
11 5 30 6.0
12 10 20 2.0
13 20 100 5.0
14 30 90 3.0
15 40 160 4.0
Step 3: Arranging the items with decreasing order of Pi as,
Items wi Vi Pi=vi/wi
11 5 30 6.0
I3 20 100 5.0
15 40 160 4.0
14 30 90 3.0
12 10 20 2.0

Now filling the knapsack according to decreasing value of Pi

35

20
25
5

Maximum value=v1 + v2+new (v3)=30+100+140=270
40w = 160 vi
1w =160/40 = 4vi
35w=35*4=140vi

60

By Bhupendra aud Jfage 63

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Huffman Codes:

Huffman codes are used to compress data by representing each alphabet by unique binary codes in
an optimal way. As an example consider the file of 100,000 characters with the following
frequency distribution assuming that there are only 7 characters

f(a) = 40,000, f(b) = 20,000, f(c) = 15,000, f(d) = 12,000, f(e) = 8,000, f(f) = 3,000,

f(g) = 2,000.

Here fixed length code for 7 characters we need 3 bits to represent all characters like
a=000,b=001,c=010,d=011,e=100,f=101, g = 110.

Total number of bits required due to fixed length code is 300,000.

Greedy strategy: Now consider variable length character so that character with highest frequency
is given smaller codes like

C={a b,cdefqg} f(c)=40,20,15,12,8,3,2;n=7

Initial priority queue is

2 | |3 e | B d [12 ([e [15 (| b |20 (| a |40

1o

(s)
vy
!

oY
0 /

fl3

o
=]

N

d | 12 '\;}3 j
o~ \'
o
I 5
,f‘ e | B
0)_\ I
o | 2 E
By Bhupendra aud Jfage 64

Downloaded from CSIT Tutor

Pesign FAnd afna-éuib of Ftlgorithms (DAE) New Summit College (B.8e.€5T)

=4 T
' b | 20 a0) ~ T
TN
c | 15 a5)
/-_ J/\A
d |12 13 :f

Il
tm

_ AN
i=6 -flﬂﬁ“xl d |12 '\:_JT' J
/_--- | T_,-"'f 1
- (5) .
, PN N e
3k (0 WAl
A e Y EMRA LN
b |2 (40)
w_ _-/\
C 1 IKI-E;E_--R\'I

d|1 (_1_35
(1]
1
,/;\,/ \
- e | B
0 1
o | 2 fl3

a=0,b=10,c=110,d=1110,e=11111,f=111101,9=111100

Total number of bits required due to variable length code is

40,000*1 + 20,000*2 + 15,000*3 + 12,000*4 + 8,000*5 + 3,000*6 + 2,000*6.
i.e. 243,000 bits

Here we saved approximately 19% of the space.

By Bhupendra aud dfage 65

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Analysis

We can use BuildHeap(C){see notes on sorting} to create a priority queue that takes O(n) time.
Inside the for loop the expensive operations can be done in O(logn) time. Since operations inside
for loop executes for n-1 time total running time of HuffmanAlgo is O(nlogn).

Job Sequencing with Deadline:
e Asetofn jobs, S={al,a2,a3,...... ,an}
e Deadline of jobs={d1,d2,d3,...... dn}
e Profit can be earned if job is completed within their deadline={p1,p2,p3,......pn}
Here every job can be completed in unit time (i.e. first job begins at time o and finished at time 1,
the second job begins at time 1 and finished at time 2 and so on.) and we have a single machine
(processor).
The main aim of this problem is to find the feasible sequence of jobs that maximize the profit
earned.
Example: lets assume that there are 4 jobs
n=4
Sz(pL P2, P3, p4)
D=(d1,d2,d3,d4):(2,1,2,1)
P=(100,10,15,27)
Find the sequence due to which maximize the profit.
Case 1:
Job p1---feasible----100 profit
Job p2---not feasible----100 profit
Job p3---feasible-----100+15 profit
Job p4---not feasible----115 profit

Case 2:
Job p2---feasible----10 profit
Job p1---feasible----10+100 profit
Job p3---not feasible-----100+10 profit
Job p4---not feasible----110 profit
In this way we can find various profits by taking all possible combinations of jobs and choose any
one sequence that produces maximum profit.
But in this way the time complexity for finding optimal solution is O(n!)
Now an alternative way to find the optimal solution with less time is greedy approach.
According to greedy algorithm for this problem, at first sort the jobs on the basis of profit as,
S = (p1, Ps, P3, P2)
D= (dl, d4, d3, dz) = (2, l, 2, 1)
P = (100, 27, 15, 10)

Job Feasible/non feasible processing

Sequence profit
pl feasible {pl1} 100
p4 feasible {p1, p4} 100+27=127
p3 not feasible {pl, p4} 127
p2 not feasible {pl, p4}2, 3 127
By Bhupendra aud Jfage 66

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Thus the optimal profit=127 with the processing sequence= {p1, p4}

Algorithm:
Assume the jobs are ordered such that p[1]>p[2]>...>p[n] d[i]>=1, 1<=i<=n are the deadlines,
n>=1. The jobs n are ordered such that p[1]>=p[2]>=... >=p[n]. J[i] is the ith job in the optimal
solution, 1<=i<=k. Also, at termination d[J[i]]<=d[J[i+1]], 1<=i<k.

JobSequencing(int d[], int j[], int n)

{
d[0] =J[0] = O; // Initialize.
J[1] = 1; // Include job 1.
int k=1;
for (int iI=2; i<=n; i++)
{
intr=k;
while ((d[J[r]] > d[i]) && (d[J[r]] !=T))
r--;
if (d[I[r]] <= d[i]) && (d[i] > 1))
{
/' Insert i into J[].
for (int g=k; g>=(r+1); g--)
Ja+1] =J[ql;
JIr+1] =i; k++;
}
}
return (k);
}

Analysis

For loop executes O(n) line. While loop inside the for loop executes at most times and if the
condition given inside if statement is true inner for loop executes O(k-r) times. Hence total time
for each iteration of outer for loop is O(k). Thus time complexity is O(n?) .

oBg oB/zu/:en.d‘ta Saud (fage 67

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Unit 3

Graph Algorithms

Graph is a collection of vertices or nodes, connected by a collection of edges. Graphs are
extremely important because they are a very flexible mathematical model for many application
problems. Basically, any time you have a set of objects, and there is some ‘“connection” or
“relationship” or “interaction” between pairs of objects, a graph is a good way to model this.
Examples of graphs in application include communication and transportation networks, VLSI and
other sorts of logic circuits, surface meshes used for shape description in computer-aided design
and geographic information systems, precedence constraints in scheduling systems etc.

A directed graph (or digraph) G = (V,E) consists of a finite set V , called the vertices or nodes, and
E, a set of ordered pairs, called the edges of G.

An undirected graph (or graph) G = (V,E) consists of a finite set V of vertices, and a set E of
unordered pairs of distinct vertices, called the edges.

Graph Traversals

There are a number of approaches used for solving problems on graphs. One of the most important
approaches is based on the notion of systematically visiting all the vertices and edge of a graph.
The reason for this is that these traversals impose a type of tree structure (or generally a forest) on
the graph, and trees are usually much easier to reason about than general graphs.

Breadth-first search

This is one of the simplest methods of graph searching. Choose some vertex arbitrarily as a root.
Add all the vertices and edges that are incident in the root. The new vertices added will become the
vertices at the level 1 of the BFS tree. Form the set of the added vertices of level 1, find other
vertices, such that they are connected by edges at level 1 vertices. Follow the above step until all
the vertices are added.

Algorithm:
BFS(G,s) /Is is start vertex
{
T={s}
L =®; //an empty queue
Enqueue(L,s);
while (L 1= ®)
{
v = dequeue(L);
for each neighbor w to v
if (W€ Landw € T)
{
enqueue(L,w);
T =T U {w}; //put edge {v,w} also
}
}
}
By Bhupendra aud Jfage 68

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Example:
Use breadth first search to find a BFS tree of the following graph.

Solution:

Analysis

From the algorithm above all the vertices are put once in the queue and they are accessed. For each
accessed vertex from the queue their adjacent vertices are looked for and this can be done in O(n)
time(for the worst case the graph is complete). This computation for all the possible vertices that
may be in the queue i.e. n, produce complexity of an algorithm as O(n?). Also from aggregate
analysis we can write the complexity as O(E+V) because inner loop executes E times in total.

Depth First Search

This is another technique that can be used to search the graph. Choose a vertex as a root and form a
path by starting at a root vertex by successively adding vertices and edges. This process is
continued until no possible path can be formed. If the path contains all the vertices then the tree
consisting this path is DFS tree. Otherwise, we must add other edges and vertices. For this move
back from the last vertex that is met in the previous path and find whether it is possible to find new
path starting from the vertex just met. If there is such a path continue the process above. If this
cannot be done, move back to another vertex and repeat the process. The whole process is
continued until all the vertices are met. This method of search is also called backtracking.

Example:
Use depth first search to find a spanning tree of the following graph.

By Bhupendra aud Jfage 69

Downloaded from CSIT Tutor

Design ftnd Gnalysis of lgorithms (DAE) New Summit College (B.§c.€5T)

Solution:

Choose a as initial vertex then we have
/A
¢ ¢ L 0
/A
o & 0 6 0
6 0 6 0

By Bhupendra aud dfage 70

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.8e.€5UT)

8

Algorithm:
DFS(G,s)
{
T={s}
Traverse(s);
}
Traverse(v)
{
for each w adjacent to v and not yet in T
{
T =T U {w}, //put edge {v,w} also
Traverse (W);
}
}
Analysis:

The complexity of the algorithm is greatly affected by Traverse function we can write its running
time in terms of the relation T(n) = T(n-1) + O(n), here O(n) is for each vertex at most all the
vertices are checked (for loop). At each recursive call a vertex is decreased. Solving this we can
find that the complexity of an algorithm is O(n?).

Also from aggregate analysis we can write the complexity as O(E+V) because traverse function is
invoked V times maximum and for loop executes O(E) times in total.

Minimum Spanning Tree

Given an undirected graph G = (V,E), a subgraph T =(V,E”) of G is a spanning tree if and only if T
is a tree. The MST is a spanning tree of a connected weighted graph such that the total sum of the
weights of all edges elE’ is minimum amongst all the sum of edges that would give a spanning
tree.

Kruskal’s Algorithm:

The problem of finding MST can be solved by using Kruskal’s algorithm. The idea behind this
algorithm is that you put the set of edges form the given graph G = (V,E) in nondecreasing order of
their weights. The selection of each edge in sequence then guarantees that the total cost that would
from will be the minimum. Note that we have G as a graph, V as a set of n vertices and E as set of
edges of graph G.

By Bhupendra aud dfage 77

Downloaded from CSIT Tutor

opebl;:gn dnd Enalysis of d?{go'cit/mu (,poQoQ) New Summit College wgc €5%d)
18

Example:
Find the MST and its weight of the graph.

Solution:
1l

d
Edge with weight 11 forms Edge with weight 15 forms
cycle so discard it ~ cycle so discard it

1l ~
10 T/ o 10
3] s 13
lk'f —» O l'u I| —
|

B
IEI I IEj:l I'I
8 5 0

The total weight of MST is 64.

Algorithm:
KruskalMST(G)

{
T = {V} // forest of n nodes
S = set of edges sorted in nondecreasing order of weight

while(]T| < n-1 and E 1=0)

Select (u,v) from S in order

Remove (u,v) from E
if((u,v) doesnot create a cycle in T))

T=Tu{(uv)}
dfage 72

oBg oB/mpend‘m Saud

Downloaded from CSIT Tutor

ﬁeblgn dnd Enalysis of d@{gotit/mu Qpaqa@) New Summit College GB 5. €5%T)
}
}

Analysis:

In the above algorithm the n tree forest at the beginning takes (V) time, the creation of set
S takes O(ElogE) time and while loop execute O(n) times and the steps inside the loop
take almost linear time (see disjoint set operations; find and union). So the total time
taken is O(ElogE) or asymptotically equivalently O(ElogV)!.

Prim’s Algorithm

This is another algorithm for finding MST. The idea behind this algorithm is just take any arbitrary
vertex and choose the edge with minimum weight incident on the chosen vertex. Add the vertex
and continue the above process taking all the vertices added. Remember the cycle must be avoided.

Example:

Find the minimum spanning tree of the following graph.

Solution: note: dotted edge is chosen.

(4 0\ /\ WV SN

. 7% |
||| ﬁ,:lhﬁ?_h-t_@ @ @ ,Il |. _______ 'L _____ : _____ Jg @ 'l
| U YA
\S_/ _/ \S_/

By Bhupendra aud dfage 73

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) (ffe:' eZam.m.it College (B.8.€5T)

\ f/ \

."-'I
I;l
J 7 17 10
! 3 3
|II | I e I._:
. .
1?\ 8/]i\@{
- 3’/ V-S
-- MST

The total weight of MST is 64.

Algorithm:
PrimMST(G)
{
T=0; /I Tisaset of edges of MST
S = {s}; //s is randomly chosen vertex and S is set of vertices
while(S '=V)
{
e = (u,v) an edge of minimum weight incident to vertices in T and not forming a
simple circuitin T if added to T i.e. u € Sand ve V-S
T=Tu{uv}
S=Su{v};
}
}
Analysis:

In the above algorithm while loop execute O(V). The edge of minimum weight incident on a
vertex can be found in O(E), so the total time is O(EV). We can improve the performance of the
above algorithm by choosing better data structures as priority queue and normally it will be seen
that the running time of prim’s algorithm is O(ElogV)!.

By Bhupendra aud Jfage 74

Downloaded from CSIT Tutor

ﬁeblgn oind Enalysis of d@{gotit/wu Qqud@) New Summit College GB 5. €5%T)
Shortest Path Problem

Given a weighted graph G =(V,E), then it has weight for every path p = <vo,v,...vk> as w(p) =
w(vo,vi) + w(vi,v2) + ... + w(vk-1,Vk). A shortest path from u to v is the path from u to v with
minimum weight. Shortest path from u to v is denoted by d(u,v). It is important to remember that
the shortest path may exist in a graph or may not i.e. if there is negative weight cycle then there is
no shortest path. For e.g the below graph has no shortest path from a to ¢ .You can notice the
negative weight cycle for path a to b.

As a matter of fact even the positive weight cycle doesn’t constitute shortest path but there will be
shortest path. Some of the variations of shortest path problem include:

Single Source: This type of problem asks us to find the shortest path from the given vertex
(source) to all other vertices in a connected graph

Single Destination: This type of problem asks us to find the shortest path to the given vertex
(destination) from all other vertices in a connected graph.

Single Pair: This type of problem asks us to find the shortest path from the given vertex (source)
to another given vertex (destination).

All Pairs: This type of problem asks us to find the shortest path from the all vertices to all other
vertices in a connected graph

Single Source Problem

Relaxation: Relaxation of an edge (u,v) is a process of testing the total weight of the shortest path
to v by going through u and if we get the weight less than the previous one then replacing the
record of previous shortest path by new one.

Directed Acyclic Graphs (Single Source Shortest paths)

Recall the definition of DAG, DAG is a directed graph G = (V,E) without a cycle. The algorithm
that finds the shortest paths in a DAG starts by topologically sorting the DAG for getting the linear
ordering of the vertices. The next step is to relax the edges as usual.

Example:
Find the shortest path from the vertex c to all other vertices in the following DAG.

By Bhupendra aud dfage 75

Downloaded from CSIT Tutor

Design ftnd Gnalysis of lgorithms (DAGE) New Summit College (B.8e.€5UT)

Solution:
2)
Topologically sorted and initialized.
e o
Wwﬂhf‘ J :_,-f 8/
From (c)

© \
anJ:n\{N_

I

From (e)

(=) 8

From (h) (d) and {z) no change. So above is the shortest path tree.

By Bhupendra aud Jfage 76

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Algorithm:

DagSP(G,w,s)
{
Topologically Sort the vertices of G
for each vertex v belongs to V

dod[v] =
d[s]=0
for each vertex u, taken in topologically sorted order

do for each vertex v adjacent to u

do if d[v] > d[u] + w(u,v)
then d[v] = d[u] + w(u,v)

Dijkstra’s Algorithm

This is another approach of getting single source shortest paths. In this algorithm it is assumed that
there is no negative weight edge. Dijkstra’s algorithm works using greedy approach, as we will see
later.

Example:

Find the shortest paths from the source g to all other vertices using Dijkstra’s algorithm.

.-’t';hl
e
N S 6
S5 4 Q)
.-". ;f@le/&
S f
i _]__—oJ-I j"--.___ L I II2
(Fr 3 -1"—""“'“'“--,___ |
6 ! _______:E-
e 1
Solution:
[- -

By Bhupendra aud dfage 77

Downloaded from CSIT Tutor

opebl;:gn dnd Enalysis of d?{go'cit/mu on@a@) New Summit College wgc €5%d)

There will be no change for vertices b and d. continue above steps for b and d to

complete. The tree is shown as dark connection.

Algorithm:
Dijkstra(G,w,s)
for each vertex ve V
dod[v] =
d[s] =0
S=0
Q=V
While(Q!= &)
{
u = Take minimum from Q and delete.
By Bhupendra aud dfage 78

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
S=Su{u}
for each vertex v adjacent to u
do if d[v] > d[u] + w(u,v)
then d[v] = d[u] + w(u,v)

}

Analysis:

In the above algorithm, the first for loop block takes O(V) time. Initialization of priority queue Q
takes O(V) time. The while loop executes for O(V), where for each execution the block inside the
loop takes O(V) times . Hence the total running time is O(V?2).

All Pairs Problem

As defined in above sections, we can apply single source shortest path algorithms [V/| times to
solve all pair shortest paths problem.

Flyod’s Warshall Algorithm

The algorithm being discussed uses dynamic programming approach. The algorithm being
presented here works even if some of the edges have negative weights. Consider a weighted graph
G = (V,E) and denote the weight of edge connecting vertices i and j by wij. Let W be the adjacency
matrix for the given graph G. Let Dk denote an n"n matrix such that D«(i,j) is defined as the weight
of the shortest path from the vertex i to vertex j using only vertices from 1,2,....,k as intermediate
vertices in the ath. If we consider shortest path with intermediate vertices as above then computing
the path contains two cases. D«(i,j) does not contain k as intermediate vertex and .Dk(i,j) contains k
as intermediate vertex. Then we have the following relations

Dk(i,j) = Dx-1(i,j), when k is not an intermediate vertex, and

AR N N N
i A
D*'(ik) D*'(k.j)
D]"(Lj] = D'k + Dk"tk_j]_ when k is an intermediate vertex.
50 from the above relations we obtain:
D%(i.j)= min{D"'(ij), D*'(i.k) + D'k j)).
The above relation is used by flyod's algorithm to compute all pairs shortest path in

bottom up manner for finding D', D%,....D"

By Bhupendra aud dfage 79

Downloaded from CSIT Tutor

Design nd Analysis of tlgorithms (,poQoQ)

Example:

Solution:

Adjacency Matrix

Remember we are not showing D(i.i), since there

New Summit College (B.§c.€5T)

W 1 2 3 will be no change i.e. shortest E:ath is Zero.
DY1.2) = min{D%1.2), D"(1.1+ D"%1.2)}
1 |0 (4 |11 = min{4, 0+ 4} =4
DY1.3) = min{D%1.3), D"1.1)+ D"%1.3)}
2le |02 = min{11,0+11} =11
s T3 =10 D'2.)= min{D"2.1), D"(2.1)+ D(1.1)}
- = min{6, 6+0} =6
DY2.3) = min{D"%2.3), D"(2.1)+ D"1.3))
. = min{2, 6+ 11} = 2
D123 D'(3.1)= min{D"3.1), D"3.1)+ D"(1.1)}
= min{3, 3+0}=3
o4 DY3.2)= min{D"3.2), D"3.1)+ D"(1,2)]
2 & 0 2 = minf=e, 3+ 4}=7
NENERE D%1.2)= min{D'(1,2), D'(1.2)+ D'(2.2)}
= min{d, 4+ 0} =4
Di1.3) = min{D'(1,3), D'(1,2)+ D'(2.3))
= min{11,4+2)= 6
D'l 1|23 D¥2,1)= min{DY2,1), D'(2,2}+ D'(2.1)}
] - = min{6, 0+ 6} =6
Lo+ D%2.3) = min{D'(2.3), D'{2.2)+ D'(2,3)}
2 & 0 2 = min{2, 0+ 2} =2
D43.1) = min{D'(3,1), D'(3.2)+ D'(2.1))
3 3 7 1] = min{3, 7+ 6} =3
D%3,2) = min{D'(3.2), D'(3.2)+ D'(2.2)}
= min{7. 7+ 01 =7
3 5
ol e B D¥1.2) = min{D*1,2), D*(1,3)+ D*3,2))
1|0 |46 = min{d, 6 +7) =4
D(1.3) = min{D%1.3), D*(1,3)+ D%3.3)}
25|02 = min{6, 6+ 0} =6
YERERE D21y = min{D(2,1), D*2.3)+ D*(3.1)}
- = min{6, 2+ 3} =5
DY2.3) = min{D*2,3), D*(2.3)+ D*(3.3)}
= min{2, 2+ 0} =2
D31 = min{D*3,1), D*(3.3)+ D*(3.1)}
= min{3, 0+ 3}=3
DY3.2) = min{D*3.,2), D*(3.3)+ D*3.2)}
= min{7,04+7}=7
By Bhupendra aud Jfage 80

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.8e.€5UT)

Algorithm:
FlovdWarshalAPSP\W,D,n) & W is adjacency mairix of graph G.
{

forfi=Ii<=n:i++)
for(j=1j==1;j++)
Diiffil = Wrilijl: A initially Df] | is D"
Forik=1k<==nk++)
for(i=1i<=ni++)
for(j=1.j==1;j++)
DIilfi] = minfD{il{i]. D{i][k]+ Dik]jil}: D)1] s are DY s.

Analysis:
Clearly the above algorithm’s running time is O(n3), where n is cardinality of set V of vertices.

Exercises

1. Write an algorithm for Topological sorting the directed graph.

2. Explore the applications of DFS and BFS, Describe the biconnected component
and algorithm for its detection in a graph

3. Give an example graph where bellman ford algorithm returns FALSE, Justify for
the falsity of the return value

4. Give an example graph where Dijkstra’s algorithm fails to work. Why the found
eraph does not work, give reason?

5. Maximum Spanning Tree of a weighted Graph G = (V.E) is a subgraph T =
(WV.E") of G such that T is a tree and the sum of weights of all the edges of E is
maximum among all possible set of edges that would form a spanning tree.

Modify the prim’s algorithm to solve for maximum spanning tree.

By Bhupendra aud Jfage 87

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
chapter 2:

[Geometric Algorithms]

Computational Geometry

The field of computational geometry deals with the study of geometric problems. In our
class we present few geometric problems for e.g. detecting the intersection between line segments,
and try to solve them by using known algorithms. In this lecture, we discuss and present
algorithms on context of 2-D.

Application Domains
o Computer graphics
Robotics
GIS
CAD/CAM — IC Design, automobile, buildings.
Molecular Modeling
Pattern recognition

o O O O O

Some Definitions

Point:
A point is a pair of numbers. The numbers are real numbers, but in our usual calculation we
concentrate on integers. For e.g. p1(x1,y1) and p2(x2,y2) are two points as shown

Line segment:
A line segment is a pair of points p1and pz, where two points are end points of the segment.
For e.g. S(p1,p2) is shown below.

Pi(Xpy1)

Ray: -

A ray is an infinite one dimensional subset of a line determined by two points: say PO, P1,
where one point is denoted as the endpoint.
Thus, a ray consists of a bounded point & is extended to infinitely along a line segment.

Py
Point on the way of ray’s direction

Py
Line: - Line is represented by a pair of points PO and P1 say, which is extended in both way
to infinity along the segment represented by the pair of points PO & P1.
By Bhupendra aud Jfage 82

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms Qqud@) New Summit €ollege GB 5. €5%T)
Line: - Line is represented by a pair of points PO and P1 say, which is extended in both way to
infinity along the segment represented by the pair of points PO & P1.

Polygon:
Simply polygon is a homeomorphic image of a circle, i.e. it is a certain deformation of

circle

Simple Polygon:
A simple polygon is a region of plane bounded by a finite collection of line segments to form a

simple closed curve. Mathematically, let VO, V1, V2, --------- , Vn-1 are n ordered vertices in the
plane,

then the line segments e0 (VO, V1), el (V1,V2), ,en-1 (Vn-1, VO) form a simple polygon if
and only if;

"1 the intersection of each pair of segments adjacent in cyclic ordering is a simple single
point shared by them;
eiNei+tl =Vi+l &
1 non-adjacent segments do not intersect;
eiNej=a0
Thus, a polygon is simple if there are no points between non-consecutive linesegments,
i.e. vertices are only intersection points. Vertices of simple polygon
are assumed to be ordered into counterclockwise direction

Non-Simple polygon (Self Intersecting)
A polygon is non-simple if there is no single interior region, i.e. non-adjacent edges intersect each

other.

By Bhupendra aud Jfage 83

Downloaded from CSIT Tutor

Design Fnd Rnalysis of Rlgorithms onqoq) New Summit €ollege GB 5. €5%T)
Convex Polygon:

A simple polygon P is convex if and only if for any pair of points x, y in P the line segment
between x and y lies entirely in P. We can notice that if all the interior angle is less than 180, then
the simple polygon is a convex polygon.

Convex Polygon Non Convex (Concave)

Diagonal of a simple polygon:
A diagonal of a simple polygon is a line segments connecting two non-adjacent vertices and
lies completely inside the polygon.

Here all (V2, Vs), (V3, V7), (V4, Vs) & (V10, V12) are diagonals of the polygon but (Vg, V11) is not a
diagonal

Ear of Polygon:

Three consecutive vertices Vi, Vi+1, Vi+2 of a polygon form an ear if (Vi, Vi+2) is a diagonal, Vi+1 is the
tip of the ear.

(V1. V3, Vi) 1s an ear.

But, (Vo, V1, V1) 15 not an ear.

(V7, Vi, Vi) & (V1. Vs, V3) are non-overlapping ear:
(V1, Va, Vi) & (V3. Vi, Vs) are non-overlapping ear:
(V3. Vi, Vi) & (Vy, Vs, Vi) are overlapping ears.

By Bhupendra aud Jfage 84

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms Qqud@) New Summit €ollege GB 5. €5%T)
Mouth:

Three consecutive vertices Vi, Vi+, Vi of a polygon form a mouth if (Vi, Vi+2) is an external
diagonal. In above figure, (Vo, V1, V2) & (V2, V3, V4) are mouths of the polygon.

One-Mouth Theorem
Except for convex polygons, every simple polygon has at least one mouth.

Two-Ears Theorem
Every polygon of n > 4 vertices has at least two non-overlapping ears.

Notion of Left Turn & Right Turns:

Left Turn:

For three points Po, P1, P2in a place, Po, P1, P2is said to be left turn if line segment (P1, P2) lies to the
left of line segment (Po, P1).

Py (x2. 72)
" P 4
e+
P, 1X1. }"]} So, left tum PP P,

Po (%0, yo)

Right Turn:
If P line segment (P1, P2) lies to the right of (Po, P1) then Po, P1, P2is a right turn.
- Jr
(x.71) -7
P,_ =7 Right
So, right turn PyP4Ps
Py (%3 ¥o) P (x.70)

Computing point of intersection between two line segqments

We can apply our coordinate geometry method for finding the point of intersection between
two line segments. Let Si and S2 be any two line segments. The following steps are used to
calculate point of intersection between two line segments. We are not considering parallel line
segments here in this discussion.
e Determine the equations of line through the line segment Si1and S2. Say the equations are L1 = (y
= mux + c1) and L2 = (y = m2x + c¢2) respectively. We can find the equation of line L1 using the
formula of slope (m1) = (y2-y1)/ (x2-x1), where (x1,y1) and (x2,y2) are two given end points of the
line segment Si. Similarly we can find the m2 for L2 also. The values of ci’s can be obtained by
using the point of the line segment on the obtained equation after getting slope of the respective
lines.

By Bhupendra aud dfage 85

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
e Solve two equations of lines L1 and L2, let the value obtained by solving be p = (xi, yi). Here we
confront with two cases. The first case is, if p is the intersection of two line segments then p lies on
both S1 and S2. The second case is if p is not an intersection point then p does not lie on at least
one of the line segments S1 and S.

The figure below shows both the cases.

p L
!
(Xe.ys) ® P
’/ e 4.¥4 |l.‘/ B e
e (X2.%2) f o (32
T | - L = (X2.¥2)
I i e / 5
(X1.y1) ':-“J«J'J«,-I (xiy) [/
| .
i S: Sa ,-'l
.’ o
(X33 R 'I (X3.y3)
L, %
. Lo :
Segments do not intersect Segments intersect

Detecting point of intersection

In straightforward manner we can compute the point of intersection (p) between the lines
passing through S1 and Sz and see whether the line segments intersects or not as done in above
discussion. However, the above method uses the division in the computation and we know that
division is costly process. Here we try to detect the intersection without using division.

Left and Right Turn: Given points po(Xo,yo), p1(X1,y1), and p2(x2,y2). If we try to find whether the
path popip2 make left or right turn, we check whether the vector pop: is clockwise or
counterclockwise with respect to vector popz2. We compute the cross product
of the vectors given by two line segments as

(p1- po)x(p2- po) = (X1- Xo, Y1- Yo) x(X2- Xo, Y- Yo) = (X1- X0)(Y2- Yo)-(y1- Yo) (X2- Xo), this can
be represented as

Here we have,
1 1 1

A=lxy x x = [fA=0then pgpi.p: are collinear

= [fA =0 then pgpp; make left turn i.e. there is left turn at p;.
(pap1 is clockwise with respect to pypa).
= If A < Othen popipz make right turn i.e. there is right turn at pi.

(pop is anticlockwise with respect to pgpa).

See figure below to have idea on left and right turn as well as direction of points. The
cross product’s geometric interpretation is also shown below.

By Bhupendra aud Jfage 86

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.8e.€5UT)

Area of a parallelogram
spanned by two vectors is
... given by their cross
o ’;’rj’ff.q— product.
£

’ / Right turn
| —

Pz 4 P!ﬁ\ Anticlockwise
[T\
Fig: Cross product geometrical interpretation. / i ;E"‘/
I !/ l"-.
/ * P2

Pz Clockwise |
il

\
gl po Fig Eight turn at
L p|l""- P Left turn & e Pt

PY Fig: Left turn at py

Using the concept of left and right turn we can detect the intersection between the two line
segments in very efficient manner.

Convex hull:
Definition:
— The convex hull of a finite set of points, S in plane is the smallest convex polygon P, that

encloses S. (Smallest area)
- The convex hull of a set of points, S in the plane is the union of all the triangles determined by

points in S.
— The convex hull of a finite set of points, S, is the intersection of all the convex polygons

(sets) that contain S.

There are wide ranges of application areas where it comes use of convex hulls such as;
- In pattern recognition, an unknown shape may be represented by its convex hull, which is then

matched to a database of known shapes.
- In motion planning, if the robot is approximated by its convex hull, then it is easier to plan

collision free path on the landscape of obstacles.
— Smallest box, fitting ranges & so on.

Graham’s Scan Algorithm:

This algorithm computes convex hull of points by maintaining the feasible candidate points on the
stack. If the candidate point is not extreme, then it is removed from the stack. When all points are
examined, only the extreme points remain on the stack & which will result the final hull.

Input = P = {po, p1, ------- , pn-1} of n-points.

Output = Convex hull of P

By Bhupendra aud Jfage 87

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Algorithm:

-Find a point pi with lowest y-coordinate, let it be 0.

- Sort the input points angularly about g0 let the sorted list is now {q0, g1, ------- , gn-1}

- Push g0 into stack S and push g1 into the stack S.

- Initialize 1 =2

while (i < n)
if LeftTurn (next top (S), top (S), qi) is true
push gi into stack S.

i++
else
pop the stack
end if
end while

- Each points popped from stack are not vertex of convex hull.
- Finally, at last when all elements are processed, the points that remain on stack are the vertices of
the convex hull.

Complexity Analysis:

- Finding minimum y-coordinate point it takes O (n) time.
- Sorting angularly about the point takes O (nlogn) time.

- Pushing & popping takes constant time.

- The while loop runs for O (n) times

Hence, the complexity = O (n) + O (nlogn) + O (1) + O (n)
= O (nlogn).

Another way of constructin this Algorithm:
GrahamScan(P) // P = {p1, p2, ..., pn}

{
po = point with lowest y-coordinate value.
Angularly sort the other points with respect to po. Let g = {q1,02, ..., gm} be sorted points.
Push(S, po); // S is a stack
Push(S, qu);
Push(S, q2);
For(i=3;i<m;i++)

{

a = NexttoTop(S);
b= Top(S);
while (a,b,qi makes non left turn)
Pop(S);
Push(S,qi);
}

return S;

}

By Bhupendra aud Jfage 88

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.8e.€5UT)

Consider an example:

(1) AtFirst, Push qo & qpintostack= | | [@] qof
(2) Scan qx:
Qoq19> 1s left turn so push q; into stack. = | | I:|1-| a3 | o |
(3) Scan q3:
(1924 15 not left turn so pop (stack) ie.pop g = | | | Q1 | o |
qoq1qs 15 left turn so push g3 into stack. = | g3 :11| o |
&soon.. ..

At last, final hull will be = {qo. qu. Q3. Q4. Qs)

Exercises:
1. Write down the algorithm to find the point of intersection of two linesegments, if exists.
2. Use Graham’s scan algorithm to find convex hull of the set of points below.

g Pi3
Pis
F'll & e pl-]
P12
e P7
®
Pio L] §
P1 . 9 9 P= Ps . Ps
L L L
2 Ps P4
By Bhupendra aud Jfage 89

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Example2:
Find the convex hull of the set of points given below using graham’s scan algorithm.

pe T e
[]

p® w1 e,
Solution:
% A % de
.'r r
s .fﬁ Qs
{ !’ r . . ¢]
"o £ Al & e Ju
1‘1 J:rif:f‘-”;q_l J2e—0
o Atk S T D i
T Q3049 non left furn
(uw
Ui '-'lﬁ' 3
Q4
. .
o e al Pa
By Bhupendra aud dfage 90

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

fl'? Qs
e qf g: e
qqm
o JQzw a P
sq5q7 non left turn
L E
P !

By Bhupendra aud Jfage 97

Downloaded from CSIT Tutor

PDesign gnd gnalysis of Glgorithms QDd@dq) New Summit €ollege wgcfgw)
Chapter 3
[NP Complete Problems&Approximation Algorithms]

Up to now we were considering on the problems that can be solved by algorithms in worst-
case polynomial time. There are many problems and it is not necessary that all the problems have
the apparent solution. This concept, somehow, can be applied in solving the problem using the
computers. The computer can solve: some problems in limited time e.g. sorting, some problems
requires unmanageable amount of time e.g. Hamiltonian cycles, and some problems cannot be
solved e.g. Halting Problem. In this section we concentrate on the specific class of problems called
NP complete problems (will be defined later).

Tractable and Intractable Problems:

We call problems as tractable or easy, if the problem can be solved using polynomial time
algorithms. The problems that cannot be solved in polynomial time but requires superpolynomial
time algorithm are called intractable or hard problems. There are many problems for which no
algorithm with running time better than exponential time is known some of them are, traveling
salesman problem, Hamiltonian cycles, and circuit satisfiability, etc.

P and NP classes and NP completeness:

The set of problems that can be solved using polynomial time algorithm is regarded asclass
P. The problems that are verifiable in polynomial time constitute the class NP. The class of NP
complete problems consists of those problems that are NP as well as they are as hard as any
problem in NP (more on this later). The main concern of studying NP completeness is to
understand how hard the problem is. So if we can find some problem as NP complete then we try
to solve the problem using methods like approximation, rather than searching for the faster
algorithm for solving the problem exactly.

Problems:

Abstract Problems:

Abstract problem A is binary relation on set | of problem instances, and the set S of
problem solutions. For e.g. Minimum spanning tree of a graph G can be viewed as a pair of the
given graph G and MST graph T.

Decision Problems:

Decision problem D is a problem that has an answer as either “true”, “yes”, “1” or “false”,
”no”, “0”. For e.g. if we have the abstract shortest path with instances of the problem and the
solution set as {0,1}, then we can transform that abstract problem by reformulating the problem as
“Is there a path from u to v with at most k edges”. In this situation the answer is either yes or no.

Optimization Problems:

We encounter many problems where there are many feasible solutions and our aim is to
find the feasible solution with the best value. This kind of problem is called optimization problem.
For e.g. given the graph G, and the vertices u and v find the shortest path from u to v with
minimum number of edges. The NP completeness does not directly deal with optimizations
problems, however we can translate the optimization problem to the decision problem.

By Bhupendra aud Jfage 92

Downloaded from CSIT Tutor

Design Fnd Rnalysis of Rlgorithms QDd@dq) New Summit €ollege wgcfgw)
Encoding:

Encoding of a set S is a function e from S to the set of binary strings. With the help of encoding,
we define concrete problem as a problem with problem instances as the set of binary strings i.e. if
we encode the abstract problem, then the resulting encoded problem is concrete problem. So,

encoding as a concrete problem assures that every encoded problem can be regarded as a language
i.e. subset of {0,1}*.

Complexity Class P:

Complexity class P is the set of concrete decision problems that are polynomial time

solvable by deterministic algorithm. If we have an abstract decision problem A with instance set |
mapping the set {0,1}, an encoding e: 1->{0,1}* is used to denote the concrete decision problem
e(A). We have the solutions to both the abstract problem instance il and concrete problem
instance e(i) €{0,1}* as A(i)e{0,1}. It is important to understand that the encoding mechanism
does greatly vary the running time of the algorithm for e.g. take some algorithm that runs in O(n)
time, where the n is size of the input. Say if the input is just a natural number Kk, then its unary
encoding makes the size of the input as k bits as k number of 1’s and hence the order of the
algorithm’s running time is O(k). In other situation if we encode the natural number k as binary
encoding then we can represent the number k with just logk bits (try to represent with 0 and 1only)
here the algorithm runs in O(n) time. We can notice that if n = logk then O(k) becomes O(2n) with
unary encoding. However in our discussion we try to discard the encoding like unary such that
there is not much difference in complexity.
We define polynomial time computable function f:{0,1}*—>{0,1}* with respect to some
polynomial time algorithm PA such that given any input x {0,1}*, results in output f(x). For
some set | of problem instances two encoding e1 and ez are polynomially related if there are two
polynomial time computable functions f and g such that for any i I, both f(ei(i)) = e2(i) and
g(ez(i)) = eu(i) are true i.e. both the encoding should computed from one encoding to another
encoding in polynomial time by some algorithm.

Polynomial time reduction:

Given two decision problems A and B, a polynomial time reduction from Ato B is a
polynomial time function f that transforms the instances of A into instances of B such that the
output of algorithm for the problem A on input instance x must be same as the output of the
algorithm for the problem B on input instance f(x) as shown in the figure below. If there is
polynomial time computable function f such that it is possible to reduce A to B, then it is denoted
as A <pB. The function f described above is called reduction function and the algorithm for
computing f is called reduction algorithm.

Input for A Algorithm for A
X yesno
—p»—» » Alzorithm for B >
f(x) Output from A
Input for B Output from B
By Bhupendra aud Jfage 93

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Complexity Class NP:

NP is the set of decision problems solvable by nondeterministic algorithms in polynomial
time. When we have a problem, it is generally much easier to verify that a given value is solution
to the problem rather than calculating the solution of the problem. Using the above idea we say the
problem is in class NP (nondeterministic polynomial time) if there is an algorithm for the problem
that verifies the problem in polynomial time. V is the verification algorithm to the decision
problem D if V takes input string x as an instance of the problem D and another binary string v,
certificate, whose size is no more than the polynomial in the size of x. the algorithm V verifies an
input x if there is a certificate y such that answer of D to the input x with certificate y is yes. For
e.g. Circuit satisfiability problem (SAT) is the question “Given a Boolean combinational circuit, is
it satisfiable? i.e. does the circuit has assignment sequence of truth values that produces the output
of the circuit as 1?” Given the circuit satisfiability problem take a circuit x and a certificate y with
the set of values that produce output 1, we can verify that whether the given certificate satisfies the
circuit in polynomial time. So we can say that circuit satisfiability problem is NP. We can always
say P I NP, since if we have the problem for which the polynomial time algorithm exists to solve
(decide: notice the difference between decide and accept) the problem, then we can always get the
verification algorithm that neglects the certificate and accepts the output of the polynomial time
algorithm. From the above fact we are clear that P [NP but the question, whether P = NP remains
unsolved and is still the big question in theoretical computer science. Most of the computer
scientists, however, believes that P * NP.

NP-Completeness:

NP complete problems are those problems that are hardest problems in class NP. We define
some problem say A, is NP-complete if

1. A e NP, and

2. B <p A, for every B € NP.
We call the problem (or language) A satisfying property 2 is called NP-hard.

Cook’s Theorem:

“SAT is NP-hard”
Proof: (This is not actual proof as given by cook, this is just a sketch)
Take a problem V [1 NP, let A be the algorithm that verifies V in polynomial time (this must be
true since V 1 NP). We can program A on a computer and therefore there exists a (huge) logical
circuit whose input wires correspond to bits of the inputs x and y of A and which outputs 1
precisely when A(X,y) returns yes.
For any instance x of V let Ax be the circuit obtained from A by setting the x-input wire values
according to the specific string X. The construction of Axfrom x is our reduction function. If x is a
yes instance of V, then the certificate y for x gives satisfying assignments for Ax. Conversely, if Ax
outputs 1 for some assignments to its input wires, that assignment translates into a certificate for x.

Theorem 2: (Cook’s Theorem)
“SAT is NP-complete”
Proof:
To show that SAT is NP-complete we have to show two properties as given by the definition of
NP-complete problems. The first property i.e. SAT is in NP we showed above (see pg 5 italicized

By Bhupendra aud Jfage 94

Downloaded from CSIT Tutor

Design Fnd Rnalysis of Rlgorithms Qqud@) New Summit €ollege GB 5. €5%T)
part), so it is sufficient to show the second property holds for SAT. The proof for the second
property i.e. SAT is NP-hard is from lemma 3. This completes the proof.

Approximation Algorithms:

An approximate algorithm is a way of dealing with NP-completeness for optimization
problem. This technique does not guarantee the best solution. The goal of an approximation
algorithm is to come as close as possible to the optimum value in a reasonable amount of time
which is at most polynomial time. If we are dealing with optimization problem (maximization or
minimization) with feasible solution having positive cost then it is worthy to look at approximate
algorithm for near optimal solution.

An algorithm has an approximate ratio of p(n) if, for any problem of input size n, the cost C of
solution by an algorithm and the cost C* of optimal solution have the relation as max(C/C*,C*,C)
< p(n). Such an algorithm is called p(n)-approximation algorithm.

The relation applies for both maximization (0 < C < C*) and minimization (0 < C* < C) problems.
p(n) is always greater than or equal to 1. If solution produced by approximation algorithm is true
optimal solution then clearly we have p(n) = 1.

Vertex Cover Problem:
A vertex cover of an undirected graph G =(V.,E) 1s a subset V' < V such that for all

edges (u,v) €E either ueV' orve V' or u and v € V'. The problem here is to find the
vertex cover of minimum size in a given graph G. Optimal vertex-cover is the
optimization version of an NP-complete problem but it is not too hard to find a vertex-

cover that is near optimal.

Algorithm:
ApproxVertexCover (G)
{
C {};
E’=F
while E is not empty
do Let (u, v) be an arbitrary edge of E
C=C={u,Vv}
Remove from E" every edge incident on either u or v
return C

}

Example: (vertex cover running example for graph below)

By Bhupendra aud Jfage 95

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)

Solution:

Edge chosen is {h,e) C= [be) FEdge chosen iz (fe) C= [b,ce.f]

Edge chosenis (2. d) C= [bedefgl Optimal vertex cover as lightly shaded vertices

Analysis:
If E’ is represented using the adjacency lists the above algorithm takes O (V+E) since each edge is
processed only once and every vertex is processed only once throughout the hole operation.

By Bhupendra aud Jfage 96

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
Tribhuvan University
Bachelor of Science in Computer Science
And Information Technology
Examination, 2069

New Summit College
(Old Baneshowr , Kathmandu)

Subject: “Design and Analysis of Algorithm(DAA)” FM:80

Time: 3 hr. PM: 32

Attempt all the Questions {10 x 8 =80}

1. Why asymptotic notations are important in algorithm analysis? Describe big-O, big-[1 rand big-
theta notation with suitable examples. {2 + 2 + 2+2}

2. What is recurrence relation? Prove that the complexity of the recurrence relation “T(n) =
8T(n/2) + n2” is O(ns) by using substitution method. {1+7}

3. Given the following block of code, write a recurrence relation for it and also find asymptotic
upper bound (Assume that all dotted code takes constant time) { 4+4)
Fun(int n)

if(conditionl)
x=Fun(n/2)
else if(condition2)
x=Fun(2n/3)
else
x= Fun(n/4)

4. What is the concept behind randomized quick sort? Write down its algorithm and give its
average case analysis. {1 + 3 + 4)

5. What is meant by medial order statistics? Write the algorithm for expected liner time selection
and analyze it. {1 + 3 + 4}

6. Devise a divide and conquer algorithm for finding minimum and maximum element among a
set of given elements. Write recurrence relation for your algorithm and give its big-O estimate.

{5+ 3}

7. What are the characteristics of problem that can be solved by using dynamic programming
algorithm? Give the recursive definition of solving 0/1 knapsack problem. Trace the algorithm
for w={3,4,2,2,3}, v={12,14,6,5,6} and knapsack of capacity 12. (2+1+5)

8. Write the recurrence relation for Longest Common subsequence problem(LCS). Trace the
algorithm to find LCS of X={a,b,c,b,d,a,b} and Y={b,d,c,a,b,a}. (2+6)

9. Use master method to find the big-O estimates of the recurrences: {4+4)

By Bhupendra aud Jfage 97

Downloaded from CSIT Tutor

PDesign gtnd gnalysis of glgoxithms (DAE) New Summit College (B.§c.€5T)
a. T(n) =3T(n/2) +n

b. T(n) =4T(n/2) + n2
10 Show all the steps required for sorting an array of size 10 by using Heap sort.

a[10]={5, 3,2, 4,7, 8,1, 11, 9, 15}. (8)
Hint: At first construct a heap and then sort by using Heap sort properties.

A Complete Note in Design And Analysis of Algorithms

G SBlgpondia (I (Dl

—

Email: Saud.bhupendra427@gmail.com

Sho “End

By Bhupendra aud Jfage 98

Downloaded from CSIT Tutor

